Difference between revisions of "009C Sample Final 2, Problem 8 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find  <math>n</math>  such that the Maclaurin polynomial of degree  <math>n</math>  of  <math style="vertical-align: -5px">f(x)=\co...")
 
 
Line 1: Line 1:
<span class="exam">Find &nbsp;<math>n</math>&nbsp; such that the Maclaurin polynomial of degree &nbsp;<math>n</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f(x)=\cos(x)</math>&nbsp; approximates &nbsp;<math style="vertical-align: -13px">\cos \frac{\pi}{3}</math>&nbsp; within 0.0001 of the actual value.
+
<span class="exam">Find &nbsp;<math>n</math>&nbsp; such that the Maclaurin polynomial of degree &nbsp;<math>n</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f(x)=\cos(x)</math>&nbsp; approximates &nbsp;<math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math>&nbsp; within 0.0001 of the actual value.
 
<hr>
 
<hr>
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 6: Line 6:
 
|'''Taylor's Theorem'''
 
|'''Taylor's Theorem'''
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be a function whose &nbsp;<math style="vertical-align: -4px">(n+1)^{\mathrm{th}}</math> derivative exists on an interval &nbsp;<math style="vertical-align: 0px">I</math>,&nbsp; and let &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; be in &nbsp;<math style="vertical-align: 0px">I.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be a function whose &nbsp;<math style="vertical-align: -4px">(n+1)^{\mathrm{th}}</math> derivative exists on an interval &nbsp;<math style="vertical-align: -4px">I,</math>&nbsp; and let &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; be in &nbsp;<math style="vertical-align: 0px">I.</math>
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then, for each &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in &nbsp;<math style="vertical-align: -4px">I,</math>&nbsp; there exists &nbsp;<math style="vertical-align: -3px">z_x</math>&nbsp; between &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; such that  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then, for each &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in &nbsp;<math style="vertical-align: -4px">I,</math>&nbsp; there exists &nbsp;<math style="vertical-align: -3px">z_x</math>&nbsp; between &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; such that  
Line 23: Line 23:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using Taylor's Theorem, we have that the error in approximating &nbsp;<math style="vertical-align: -13px">\cos \frac{\pi}{3}</math>&nbsp; with  
+
|Using Taylor's Theorem, we have that the error in approximating &nbsp;<math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math>&nbsp; with  
 
|-
 
|-
 
|the Maclaurin polynomial of degree &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; is &nbsp;<math style="vertical-align: -16px">R_n\bigg(\frac{\pi}{3}\bigg)</math>&nbsp; where
 
|the Maclaurin polynomial of degree &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; is &nbsp;<math style="vertical-align: -16px">R_n\bigg(\frac{\pi}{3}\bigg)</math>&nbsp; where
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math>
|-
 
|
 
 
|}
 
|}
  
Line 82: Line 80:
 
|So, &nbsp;<math style="vertical-align: 0px">n=7</math>&nbsp; is the smallest value of &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; where the error is less than or equal to 0.0001.
 
|So, &nbsp;<math style="vertical-align: 0px">n=7</math>&nbsp; is the smallest value of &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; where the error is less than or equal to 0.0001.
 
|-
 
|-
|Therefore, for &nbsp;<math style="vertical-align: 0px">n=7</math>&nbsp; the Maclaurin polynomial approximates &nbsp;<math style="vertical-align: -13px">\cos \frac{\pi}{3}</math>&nbsp; within 0.0001 of the actual value.
+
|Therefore, for &nbsp;<math style="vertical-align: 0px">n=7</math>&nbsp; the Maclaurin polynomial approximates &nbsp;<math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math>&nbsp; within 0.0001 of the actual value.
 
|}
 
|}
  

Latest revision as of 15:56, 3 December 2017

Find    such that the Maclaurin polynomial of degree    of    approximates    within 0.0001 of the actual value.


Background Information:  
Taylor's Theorem
        Let    be a function whose   derivative exists on an interval    and let    be in  
        Then, for each    in    there exists    between    and    such that
       
        where  
        Also,  


Solution:

Step 1:  
Using Taylor's Theorem, we have that the error in approximating    with
the Maclaurin polynomial of degree    is    where
       
Step 2:  
We note that
         or  
Therefore, we have
       
Now, we have the following table.
So,    is the smallest value of    where the error is less than or equal to 0.0001.
Therefore, for    the Maclaurin polynomial approximates    within 0.0001 of the actual value.


Final Answer:  
       

Return to Sample Exam