Difference between revisions of "009C Sample Final 2, Problem 8 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\co...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\cos(x)</math> approximates <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. | + | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\cos(x)</math> approximates <math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math> within 0.0001 of the actual value. |
<hr> | <hr> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 6: | Line 6: | ||
|'''Taylor's Theorem''' | |'''Taylor's Theorem''' | ||
|- | |- | ||
− | | Let <math style="vertical-align: -5px">f</math> be a function whose <math style="vertical-align: -4px">(n+1)^{\mathrm{th}}</math> derivative exists on an interval <math style="vertical-align: | + | | Let <math style="vertical-align: -5px">f</math> be a function whose <math style="vertical-align: -4px">(n+1)^{\mathrm{th}}</math> derivative exists on an interval <math style="vertical-align: -4px">I,</math> and let <math style="vertical-align: 0px">c</math> be in <math style="vertical-align: 0px">I.</math> |
|- | |- | ||
| Then, for each <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -4px">I,</math> there exists <math style="vertical-align: -3px">z_x</math> between <math style="vertical-align: 0px">x</math> and <math style="vertical-align: 0px">c</math> such that | | Then, for each <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -4px">I,</math> there exists <math style="vertical-align: -3px">z_x</math> between <math style="vertical-align: 0px">x</math> and <math style="vertical-align: 0px">c</math> such that | ||
Line 23: | Line 23: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Using Taylor's Theorem, we have that the error in approximating <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> with | + | |Using Taylor's Theorem, we have that the error in approximating <math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math> with |
|- | |- | ||
|the Maclaurin polynomial of degree <math style="vertical-align: 0px">n</math> is <math style="vertical-align: -16px">R_n\bigg(\frac{\pi}{3}\bigg)</math> where | |the Maclaurin polynomial of degree <math style="vertical-align: 0px">n</math> is <math style="vertical-align: -16px">R_n\bigg(\frac{\pi}{3}\bigg)</math> where | ||
|- | |- | ||
| <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math> | | <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math> | ||
− | |||
− | |||
|} | |} | ||
Line 82: | Line 80: | ||
|So, <math style="vertical-align: 0px">n=7</math> is the smallest value of <math style="vertical-align: 0px">n</math> where the error is less than or equal to 0.0001. | |So, <math style="vertical-align: 0px">n=7</math> is the smallest value of <math style="vertical-align: 0px">n</math> where the error is less than or equal to 0.0001. | ||
|- | |- | ||
− | |Therefore, for <math style="vertical-align: 0px">n=7</math> the Maclaurin polynomial approximates <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. | + | |Therefore, for <math style="vertical-align: 0px">n=7</math> the Maclaurin polynomial approximates <math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math> within 0.0001 of the actual value. |
|} | |} | ||
Latest revision as of 15:56, 3 December 2017
Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.
Background Information: |
---|
Taylor's Theorem |
Let be a function whose derivative exists on an interval and let be in |
Then, for each in there exists between and such that |
where |
Also, |
Solution:
Step 1: |
---|
Using Taylor's Theorem, we have that the error in approximating with |
the Maclaurin polynomial of degree is where |
Step 2: | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
We note that | ||||||||||||||||
or | ||||||||||||||||
Therefore, we have | ||||||||||||||||
Now, we have the following table. | ||||||||||||||||
So, is the smallest value of where the error is less than or equal to 0.0001. | ||||||||||||||||
Therefore, for the Maclaurin polynomial approximates within 0.0001 of the actual value. |
Final Answer: |
---|