Difference between revisions of "009C Sample Final 2, Problem 7 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">(a) Consider the function  <math style="vertical-align: -16px">f(x)=\bigg(1-\frac{1}{2}x\bigg)^{-2}.</math>  Find the first three terms of its Bin...")
 
Line 6: Line 6:
 
!Background Information: &nbsp;  
 
!Background Information: &nbsp;  
 
|-
 
|-
|'''1.''' The Taylor polynomial of  &nbsp; <math style="vertical-align: -5px">f(x)</math> &nbsp; at &nbsp; <math style="vertical-align: -1px">a</math> &nbsp; is
+
|'''1.''' The Taylor polynomial of  &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at &nbsp;<math style="vertical-align: -1px">a</math>&nbsp; is
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math>&nbsp; where &nbsp;<math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
 
|-
 
|-
 
| '''2.''' '''Ratio Test'''  
 
| '''2.''' '''Ratio Test'''  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>&nbsp; Then,
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
 
|-
 
|-
 
|
 
|
Line 66: Line 64:
 
   </tr>
 
   </tr>
 
</table>
 
</table>
|-
 
|
 
 
|}
 
|}
  
Line 73: Line 69:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, the first three terms of the Binomial Series is
+
|So, the first three terms of the Binomial Series are
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>1+x+\frac{3}{4}x^2.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>1+x+\frac{3}{4}x^2.</math>
Line 115: Line 111:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, the Ratio Test says this series converges if &nbsp;<math style="vertical-align: -14px">\frac{|x|}{2}<1.</math>&nbsp; So, &nbsp;<math style="vertical-align: -6px">|x|<2.</math>
+
|Now, the Ratio Test says this series converges if &nbsp;<math style="vertical-align: -14px">\frac{|x|}{2}<1.</math>&nbsp;  
 +
|-
 +
|So, &nbsp;<math style="vertical-align: -6px">|x|<2.</math>
 
|-
 
|-
 
|Hence, the radius of convergence is &nbsp;<math style="vertical-align: 0px">R=2.</math>
 
|Hence, the radius of convergence is &nbsp;<math style="vertical-align: 0px">R=2.</math>

Revision as of 15:50, 3 December 2017

(a) Consider the function    Find the first three terms of its Binomial Series.

(b) Find its radius of convergence.


Background Information:  
1. The Taylor polynomial of    at    is

         where  

2. Ratio Test
        Let    be a series and    Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
We begin by finding the coefficients of the Maclaurin series for  
We make a table to find the coefficients of the Maclaurin series.
Step 2:  
So, the first three terms of the Binomial Series are
       

(b)

Step 1:  
By taking the derivative of the known series
   
we find that the Maclaurin series of    is
       
Letting   play the role of the Maclaurin series of    is
       
Step 2:  
Now, we use the Ratio Test to determine the radius of convergence of this power series.
We have
       
Now, the Ratio Test says this series converges if   
So,  
Hence, the radius of convergence is  


Final Answer:  
   (a)   
   (b)    The radius of convergence is  

Return to Sample Exam