Difference between revisions of "009C Sample Final 2, Problem 7 Detailed Solution"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">(a) Consider the function <math style="vertical-align: -16px">f(x)=\bigg(1-\frac{1}{2}x\bigg)^{-2}.</math> Find the first three terms of its Bin...") |
Kayla Murray (talk | contribs) |
||
| Line 6: | Line 6: | ||
!Background Information: | !Background Information: | ||
|- | |- | ||
| − | |'''1.''' The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align: -1px">a</math> is | + | |'''1.''' The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align: -1px">a</math> is |
|- | |- | ||
| | | | ||
| − | <math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> | + | <math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> |
|- | |- | ||
| '''2.''' '''Ratio Test''' | | '''2.''' '''Ratio Test''' | ||
|- | |- | ||
| − | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | + | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, |
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| Line 66: | Line 64: | ||
</tr> | </tr> | ||
</table> | </table> | ||
| − | |||
| − | |||
|} | |} | ||
| Line 73: | Line 69: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |So, the first three terms of the Binomial Series | + | |So, the first three terms of the Binomial Series are |
|- | |- | ||
| <math>1+x+\frac{3}{4}x^2.</math> | | <math>1+x+\frac{3}{4}x^2.</math> | ||
| Line 115: | Line 111: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| − | |Now, the Ratio Test says this series converges if <math style="vertical-align: -14px">\frac{|x|}{2}<1.</math> So, <math style="vertical-align: -6px">|x|<2.</math> | + | |Now, the Ratio Test says this series converges if <math style="vertical-align: -14px">\frac{|x|}{2}<1.</math> |
| + | |- | ||
| + | |So, <math style="vertical-align: -6px">|x|<2.</math> | ||
|- | |- | ||
|Hence, the radius of convergence is <math style="vertical-align: 0px">R=2.</math> | |Hence, the radius of convergence is <math style="vertical-align: 0px">R=2.</math> | ||
Revision as of 14:50, 3 December 2017
(a) Consider the function Find the first three terms of its Binomial Series.
(b) Find its radius of convergence.
| Background Information: |
|---|
| 1. The Taylor polynomial of at is |
|
where |
| 2. Ratio Test |
| Let be a series and Then, |
|
If the series is absolutely convergent. |
|
If the series is divergent. |
|
If the test is inconclusive. |
Solution:
(a)
| Step 1: | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| We begin by finding the coefficients of the Maclaurin series for | ||||||||||||||||
| We make a table to find the coefficients of the Maclaurin series. | ||||||||||||||||
|
|
| Step 2: |
|---|
| So, the first three terms of the Binomial Series are |
(b)
| Step 1: |
|---|
| By taking the derivative of the known series |
| we find that the Maclaurin series of is |
| Letting play the role of the Maclaurin series of is |
| Step 2: |
|---|
| Now, we use the Ratio Test to determine the radius of convergence of this power series. |
| We have |
| Now, the Ratio Test says this series converges if |
| So, |
| Hence, the radius of convergence is |
| Final Answer: |
|---|
| (a) |
| (b) The radius of convergence is |