Difference between revisions of "009C Sample Final 2, Problem 6 Detailed Solution"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">(a) Express the indefinite integral  <math style="vertical-align: -13px">\int \sin(x^2)~dx</math>  as a power series. <span class="exam">(b) Expr...")
 
 
Line 8: Line 8:
 
|What is the power series of &nbsp;<math style="vertical-align: -1px">\sin x?</math>
 
|What is the power series of &nbsp;<math style="vertical-align: -1px">\sin x?</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; The power series of &nbsp;<math style="vertical-align: -1px"> \sin x</math>&nbsp; is &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;The power series of &nbsp;<math style="vertical-align: -1px"> \sin x</math>&nbsp; is &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!}.</math>
 
|}
 
|}
  
Line 48: Line 48:
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.}
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.}
 
\end{array}</math>
 
\end{array}</math>
|-
 
|&nbsp;
 
 
|}
 
|}
  
Line 78: Line 76:
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}-0}\\
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}-0}\\
 
&&\\
 
&&\\
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}}
+
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n}{(4n+3)(2n+1)!}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-

Latest revision as of 15:46, 3 December 2017

(a) Express the indefinite integral    as a power series.

(b) Express the definite integral    as a number series.


Background Information:  
What is the power series of  
       The power series of    is  


Solution:

(a)

Step 1:  
The power series of    is  
So, the power series of     is
 
       
 
Step 2:  
Now, to express the indefinite integral as a power series, we have
 
       

(b)

Step 1:  
From part (a), we have
       
Now, we have
       
Step 2:  
Hence, we have
 
       
 


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam