Difference between revisions of "009C Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> Let
 
<span class="exam"> Let
  
::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math>
+
::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math>
  
<span class="exam">a) Find the radius of convergence of the power series.
+
<span class="exam">(a) Find the radius of convergence of the power series.
  
<span class="exam">b) Determine the interval of convergence of the power series.
+
<span class="exam">(b) Determine the interval of convergence of the power series.
  
<span class="exam">c) Obtain an explicit formula for the function <math style="vertical-align: -5px">f(x)</math>.
+
<span class="exam">(c) Obtain an explicit formula for the function &nbsp;<math style="vertical-align: -5px">f(x)</math>.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|Recall:
 
|-
 
|'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|</math>. Then,
 
|-
 
|
 
::If <math style="vertical-align: -1px">L<1</math>, the series is absolutely convergent.
 
|-
 
|
 
::If <math style="vertical-align: -1px">L>1</math>, the series is divergent.
 
|-
 
|
 
::If <math style="vertical-align: -1px">L=1</math>, the test is inconclusive.
 
|-
 
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval
 
|-
 
|
 
::for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1</math>.
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009C Sample Final 1, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|To find the radius of convergence, we use the ratio test. We have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)x^{n+1}}{nx^n}}\bigg|\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{n+1}{n}x\bigg|}\\
 
&&\\
 
& = & \displaystyle{|x|\lim_{n \rightarrow \infty}\frac{n+1}{n}}\\
 
&&\\
 
& = & \displaystyle{|x|}\\
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Thus, we have <math style="vertical-align: -5px">|x|<1</math> and the radius of convergence of this series is <math style="vertical-align: -1px">1</math>.
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From part (a), we know the series converges inside the interval <math style="vertical-align: -5px">(-1,1)</math>.
 
|-
 
|Now, we need to check the endpoints of the interval for convergence.
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|For <math style="vertical-align: -2px">x=1</math>, the series becomes <math>\sum_{n=1}^{\infty}n</math>, which diverges by the Divergence Test.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|For <math style="vertical-align: -2px">x=-1</math>, the series becomes <math>\sum_{n=1}^{\infty}(-1)^n n</math>, which diverges by the Divergence Test.
 
|-
 
|Thus, the interval of convergence is <math style="vertical-align: -5px">(-1,1)</math>.
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Recall that we have the geometric series formula <math>\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n</math> for <math>|x|<1</math>.
 
|-
 
|Now, we take the derivative of both sides of the last equation to get
 
|-
 
|
 
::<math>\frac{1}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n-1}</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x</math>.
 
|-
 
|So, we have <math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x)</math>.
 
|-
 
|Thus, <math>f(x)=\frac{x}{(1-x)^2}</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math style="vertical-align: -3px">1</math>
 
|-
 
|'''(b)''' <math style="vertical-align: -3px">(-1,1)</math>
 
|-
 
|'''(c)''' <math style="vertical-align: -18px">f(x)=\frac{x}{(1-x)^2}</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 14:37, 3 December 2017

Let

(a) Find the radius of convergence of the power series.

(b) Determine the interval of convergence of the power series.

(c) Obtain an explicit formula for the function  .


Solution


Detailed Solution


Return to Sample Exam