Difference between revisions of "009C Sample Final 1, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<span class="exam"> Let | <span class="exam"> Let | ||
− | + | ::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math> | |
− | <span class="exam">a) Find the radius of convergence of the power series. | + | <span class="exam">(a) Find the radius of convergence of the power series. |
− | <span class="exam">b) Determine the interval of convergence of the power series. | + | <span class="exam">(b) Determine the interval of convergence of the power series. |
− | <span class="exam">c) Obtain an explicit formula for the function <math>f(x)</math>. | + | <span class="exam">(c) Obtain an explicit formula for the function <math style="vertical-align: -5px">f(x)</math>. |
− | + | <hr> | |
− | + | [[009C Sample Final 1, Problem 5 Solution|'''<u>Solution</u>''']] | |
− | |||
− | |||
− | | | ||
− | |||
− | ''' | + | [[009C Sample Final 1, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 14:37, 3 December 2017
Let
(a) Find the radius of convergence of the power series.
(b) Determine the interval of convergence of the power series.
(c) Obtain an explicit formula for the function .