Difference between revisions of "009C Sample Final 1"
Kayla Murray (talk | contribs) (→ Problem 3 ) |
Kayla Murray (talk | contribs) (→ Problem 5 ) |
||
(15 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
<span class="exam">Compute | <span class="exam">Compute | ||
− | <span class="exam">(a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> | + | <span class="exam">(a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> |
− | <span class="exam">(b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math> | + | <span class="exam">(b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math> |
== [[009C_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009C_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
<span class="exam"> Find the sum of the following series: | <span class="exam"> Find the sum of the following series: | ||
− | <span class="exam">(a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math> | + | <span class="exam">(a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math> |
− | <span class="exam">(b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math> | + | <span class="exam">(b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math> |
== [[009C_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | == [[009C_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
Line 26: | Line 26: | ||
<span class="exam"> Find the interval of convergence of the following series. | <span class="exam"> Find the interval of convergence of the following series. | ||
− | + | ::<math>\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math> | |
== [[009C_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | == [[009C_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
<span class="exam"> Let | <span class="exam"> Let | ||
− | + | ::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math> | |
− | + | <span class="exam">(a) Find the radius of convergence of the power series. | |
− | + | <span class="exam">(b) Determine the interval of convergence of the power series. | |
− | + | <span class="exam">(c) Obtain an explicit formula for the function <math style="vertical-align: -5px">f(x)</math>. | |
== [[009C_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | == [[009C_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
− | <span class="exam"> Find the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> at <math>a=\frac{\pi}{4}</math>. | + | <span class="exam"> Find the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> at <math>a=\frac{\pi}{4}</math>. |
== [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | == [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
<span class="exam">A curve is given in polar coordinates by | <span class="exam">A curve is given in polar coordinates by | ||
− | + | ::<math>r=1+\sin\theta</math> | |
− | + | <span class="exam">(a) Sketch the curve. | |
− | + | <span class="exam">(b) Compute <math style="vertical-align: -12px">y'=\frac{dy}{dx}</math>. | |
− | + | <span class="exam">(c) Compute <math style="vertical-align: -12px">y''=\frac{d^2y}{dx^2}</math>. | |
== [[009C_Sample Final 1,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | == [[009C_Sample Final 1,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
<span class="exam">A curve is given in polar coordinates by | <span class="exam">A curve is given in polar coordinates by | ||
− | + | ::<math>r=1+\sin 2\theta</math> | |
− | + | ::<math>0\leq \theta \leq 2\pi</math> | |
− | + | <span class="exam">(a) Sketch the curve. | |
− | + | <span class="exam">(b) Find the area enclosed by the curve. | |
== [[009C_Sample Final 1,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | == [[009C_Sample Final 1,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
<span class="exam">A curve is given in polar coordinates by | <span class="exam">A curve is given in polar coordinates by | ||
− | + | ::<span class="exam"><math>r=\theta</math> | |
− | + | ::<span class="exam"><math>0\leq \theta \leq 2\pi</math> | |
<span class="exam">Find the length of the curve. | <span class="exam">Find the length of the curve. | ||
Line 74: | Line 74: | ||
<span class="exam">A curve is given in polar parametrically by | <span class="exam">A curve is given in polar parametrically by | ||
− | + | ::<span class="exam"><math>x(t)=3\sin t</math> | |
− | + | ::<span class="exam"><math>y(t)=4\cos t</math> | |
− | + | ::<span class="exam"><math>0\leq t \leq 2\pi</math> | |
− | + | <span class="exam">(a) Sketch the curve. | |
− | + | <span class="exam">(b) Compute the equation of the tangent line at <math style="vertical-align: -14px">t_0=\frac{\pi}{4}</math>. |
Latest revision as of 14:36, 3 December 2017
This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Compute
(a)
(b)
Problem 2
Find the sum of the following series:
(a)
(b)
Problem 3
Determine whether the following series converges or diverges.
Problem 4
Find the interval of convergence of the following series.
Problem 5
Let
(a) Find the radius of convergence of the power series.
(b) Determine the interval of convergence of the power series.
(c) Obtain an explicit formula for the function .
Problem 6
Find the Taylor polynomial of degree 4 of at .
Problem 7
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute .
(c) Compute .
Problem 8
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Find the area enclosed by the curve.
Problem 9
A curve is given in polar coordinates by
Find the length of the curve.
Problem 10
A curve is given in polar parametrically by
(a) Sketch the curve.
(b) Compute the equation of the tangent line at .