Difference between revisions of "8A F11 Q12"
Jump to navigation
Jump to search
(Created page with "'''Question: ''' Find and simplify the difference quotient <math>\frac{f(x+h)-f(x)}{h}</math> for f(x) = <math>\frac{2}{3x+1}</math> {| class="mw-collapsible mw-collapsed"...") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 28: | Line 28: | ||
|Now we simplify the numerator: | |Now we simplify the numerator: | ||
|- style = "text-align:center;" | |- style = "text-align:center;" | ||
− | |<math>\frac{f(x + h) - f(x)}{h} = \left(\frac{2}{3(x + h) + 1} - \frac{2}{3x + 1}\right) \div h</math> | + | | |
+ | <math>\begin{array}{rcl} | ||
+ | \frac{f(x + h) - f(x)}{h} &=& \left(\frac{2}{3(x + h) + 1} - \frac{2}{3x + 1}\right) \div h\\ | ||
+ | |||
+ | &=& \frac{2(3x + 1) -2(3(x + h) + 1)}{h(3(x + h) + 1)(3x + 1))} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Arithmetic: | ||
+ | |- | ||
+ | |Now we simplify the numerator: | ||
|- style = "text-align:center;" | |- style = "text-align:center;" | ||
− | |= <math>\frac{</math> | + | | |
+ | <math>\begin{array}{rcl} | ||
+ | \frac{2(3x + 1) -2(3(x + h) + 1)}{h(3(x + h) + 1)(3x + 1))} & = & \frac{6x + 2 - 6x -6h -2}{h(3(x + h) + 1)(3x + 1))}\\ | ||
+ | & = & \frac{-6}{(3(x + h) + 1)(3x + 1))} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
+ | |- | ||
+ | |<math>\frac{-6}{(3(x + h) + 1)(3x + 1))}</math> | ||
|} | |} | ||
+ | [[8AF11Final|<u>'''Return to Sample Exam</u>''']] |
Latest revision as of 23:57, 13 April 2015
Question: Find and simplify the difference quotient for f(x) =
Foundations |
---|
1) f(x + h) = ? |
2) How do you eliminate the 'h' in the denominator? |
Answer: |
1) Since the difference quotient is a difference of fractions divided by h. |
2) The numerator is so the first step is to simplify this expression. This then allows us to eliminate the 'h' in the denominator. |
Solution:
Step 1: |
---|
The difference quotient that we want to simplify is |
Step 2: |
---|
Now we simplify the numerator: |
|
Arithmetic: |
---|
Now we simplify the numerator: |
|
Final Answer: |
---|