Difference between revisions of "007B Sample Final 1"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[007B_Sample Final 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[007B_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[-1,1]</math>&nbsp; into four subintervals of equal length &nbsp;<math style="vertical-align: -14px">\frac{1}{2}</math>&nbsp; and compute the left-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=1-x^2.</math>
 
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[-1,1]</math>&nbsp; into four subintervals of equal length &nbsp;<math style="vertical-align: -14px">\frac{1}{2}</math>&nbsp; and compute the left-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=1-x^2.</math>
  
== [[007B_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> Evaluate the following integrals.  
 
<span class="exam"> Evaluate the following integrals.  
  
Line 16: Line 16:
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
  
== [[007B_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
<span class="exam">The rate &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; at which people get sick during an epidemic of the flu can be approximated by
 
<span class="exam">The rate &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; at which people get sick during an epidemic of the flu can be approximated by
  
Line 29: Line 29:
 
<span class="exam">(c) How many people get sick altogether?
 
<span class="exam">(c) How many people get sick altogether?
  
== [[007B_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam"> Find the volume of the solid obtained by rotating about the &nbsp;<math>x</math>-axis the region bounded by &nbsp;<math style="vertical-align: -4px">y=\sqrt{1-x^2}</math>&nbsp; and &nbsp;<math>y=0.</math>
 
<span class="exam"> Find the volume of the solid obtained by rotating about the &nbsp;<math>x</math>-axis the region bounded by &nbsp;<math style="vertical-align: -4px">y=\sqrt{1-x^2}</math>&nbsp; and &nbsp;<math>y=0.</math>
  
== [[007B_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
<span class="exam"> Find the following integrals.
 
<span class="exam"> Find the following integrals.
  
Line 39: Line 39:
 
<span class="exam">(b) &nbsp;<math>\int \sin^3(x)\cos^2(x)~dx</math>
 
<span class="exam">(b) &nbsp;<math>\int \sin^3(x)\cos^2(x)~dx</math>
  
== [[007B_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> Find the following integrals
 
  
<span class="exam">(a) &nbsp;<math>\int \frac{3x-1}{2x^2-x}~dx</math>
+
<span class="exam">Does the following integral converge or diverge? Prove your answer!
 +
 
 +
::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
  
<span class="exam">(b) &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx</math>
+
== [[007B_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
== [[007B_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
+
<span class="exam">Solve the following differential equations:
  
<span class="exam">Does the following integral converge or diverge? Prove your answer!
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -13px">\frac{dy}{dx}=3y,</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">y_0=2</math>&nbsp; for &nbsp;<math style="vertical-align: -3px">x_0=0</math>
  
::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -13px">\frac{dy}{dx}=(y-1)(y-2)</math>&nbsp; where &nbsp;<math style="vertical-align: -5px>y_0=0</math>&nbsp; for &nbsp;<math style="vertical-align: -3px">x_0=0</math>

Latest revision as of 23:56, 2 December 2017

This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Divide the interval    into four subintervals of equal length    and compute the left-endpoint Riemann sum of  

 Problem 2 

Evaluate the following integrals.

(a)  

(b)  

(c)  

 Problem 3 

The rate    at which people get sick during an epidemic of the flu can be approximated by

where    is measured in people/day and    is measured in days since the start of the epidemic.

(a) Sketch a graph of    as a function of  

(b) When are people getting sick fastest?

(c) How many people get sick altogether?

 Problem 4 

Find the volume of the solid obtained by rotating about the  -axis the region bounded by    and  

 Problem 5 

Find the following integrals.

(a)  

(b)  

 Problem 6 

Does the following integral converge or diverge? Prove your answer!

 Problem 7 

Solve the following differential equations:

(a)    where    for  

(b)    where    for