Difference between revisions of "007B Sample Final 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.''' '''Click on the''' '''<span...")
 
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[007B_Sample Final 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[007B_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[-1,1]</math>&nbsp; into four subintervals of equal length &nbsp;<math style="vertical-align: -14px">\frac{1}{2}</math>&nbsp; and compute the left-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=1-x^2.</math>
 
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[-1,1]</math>&nbsp; into four subintervals of equal length &nbsp;<math style="vertical-align: -14px">\frac{1}{2}</math>&nbsp; and compute the left-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=1-x^2.</math>
  
== [[007B_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> Evaluate the following integrals.  
 
<span class="exam"> Evaluate the following integrals.  
  
 
<span class="exam">(a) &nbsp;<math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math>
 
<span class="exam">(a) &nbsp;<math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math>
  
<span class="exam">(b) &nbsp;<math>\int \frac{x^2}{(1+x^3)^2}~dx</math>
+
<span class="exam">(b) &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx</math>
  
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
  
== [[007B_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
<span class="exam">The population density of trout in a stream is
+
<span class="exam">The rate &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; at which people get sick during an epidemic of the flu can be approximated by
 +
 
 +
::<math>r=1600te^{-0.2t}</math>
  
::<math>\rho(x)=|-x^2+6x+16|</math>
+
<span class="exam">where &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is measured in people/day and &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; is measured in days since the start of the epidemic.
  
<span class="exam">where &nbsp;<math style="vertical-align: -5px">\rho</math>&nbsp; is measured in trout per mile and &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is measured in miles. &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; runs from 0 to 12.
+
<span class="exam">(a) Sketch a graph of &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; as a function of &nbsp;<math style="vertical-align: 0px">t.</math>
  
<span class="exam">(a) Graph &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; and find the minimum and maximum.
+
<span class="exam">(b) When are people getting sick fastest?
  
<span class="exam">(b) Find the total number of trout in the stream.
+
<span class="exam">(c) How many people get sick altogether?
  
== [[007B_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam"> Find the volume of the solid obtained by rotating about the &nbsp;<math>x</math>-axis the region bounded by &nbsp;<math style="vertical-align: -4px">y=\sqrt{1-x^2}</math>&nbsp; and &nbsp;<math>y=0.</math>
 
<span class="exam"> Find the volume of the solid obtained by rotating about the &nbsp;<math>x</math>-axis the region bounded by &nbsp;<math style="vertical-align: -4px">y=\sqrt{1-x^2}</math>&nbsp; and &nbsp;<math>y=0.</math>
  
== [[007B_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
<span class="exam"> Find the following integrals.
 
<span class="exam"> Find the following integrals.
  
Line 37: Line 39:
 
<span class="exam">(b) &nbsp;<math>\int \sin^3(x)\cos^2(x)~dx</math>
 
<span class="exam">(b) &nbsp;<math>\int \sin^3(x)\cos^2(x)~dx</math>
  
== [[007B_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
+
== [[007B_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> Find the following integrals
+
 
 +
<span class="exam">Does the following integral converge or diverge? Prove your answer!
  
<span class="exam">(a) &nbsp;<math>\int \frac{3x-1}{2x^2-x}~dx</math>
+
::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
  
<span class="exam">(b) &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx</math>
+
== [[007B_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
== [[007B_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
+
<span class="exam">Solve the following differential equations:
  
<span class="exam">Does the following integral converge or diverge? Prove your answer!
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -13px">\frac{dy}{dx}=3y,</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">y_0=2</math>&nbsp; for &nbsp;<math style="vertical-align: -3px">x_0=0</math>
  
::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -13px">\frac{dy}{dx}=(y-1)(y-2)</math>&nbsp; where &nbsp;<math style="vertical-align: -5px>y_0=0</math>&nbsp; for &nbsp;<math style="vertical-align: -3px">x_0=0</math>

Latest revision as of 23:56, 2 December 2017

This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Divide the interval    into four subintervals of equal length    and compute the left-endpoint Riemann sum of  

 Problem 2 

Evaluate the following integrals.

(a)  

(b)  

(c)  

 Problem 3 

The rate    at which people get sick during an epidemic of the flu can be approximated by

where    is measured in people/day and    is measured in days since the start of the epidemic.

(a) Sketch a graph of    as a function of  

(b) When are people getting sick fastest?

(c) How many people get sick altogether?

 Problem 4 

Find the volume of the solid obtained by rotating about the  -axis the region bounded by    and  

 Problem 5 

Find the following integrals.

(a)  

(b)  

 Problem 6 

Does the following integral converge or diverge? Prove your answer!

 Problem 7 

Solve the following differential equations:

(a)    where    for  

(b)    where    for