Difference between revisions of "007B Sample Final 1"
Kayla Murray (talk | contribs) (Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.''' '''Click on the''' '''<span...") |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
<div class="noautonum">__TOC__</div> | <div class="noautonum">__TOC__</div> | ||
− | == [[007B_Sample Final | + | == [[007B_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == |
<span class="exam">Divide the interval <math style="vertical-align: -5px">[-1,1]</math> into four subintervals of equal length <math style="vertical-align: -14px">\frac{1}{2}</math> and compute the left-endpoint Riemann sum of <math style="vertical-align: -5px">y=1-x^2.</math> | <span class="exam">Divide the interval <math style="vertical-align: -5px">[-1,1]</math> into four subintervals of equal length <math style="vertical-align: -14px">\frac{1}{2}</math> and compute the left-endpoint Riemann sum of <math style="vertical-align: -5px">y=1-x^2.</math> | ||
− | == [[007B_Sample Final | + | == [[007B_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == |
<span class="exam"> Evaluate the following integrals. | <span class="exam"> Evaluate the following integrals. | ||
<span class="exam">(a) <math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math> | <span class="exam">(a) <math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math> | ||
− | <span class="exam">(b) <math>\int \frac{x | + | <span class="exam">(b) <math>\int \frac{\sqrt{x+1}}{x}~dx</math> |
<span class="exam">(c) <math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math> | <span class="exam">(c) <math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math> | ||
− | == [[007B_Sample Final | + | == [[007B_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == |
− | <span class="exam">The | + | <span class="exam">The rate <math style="vertical-align: 0px">r</math> at which people get sick during an epidemic of the flu can be approximated by |
+ | |||
+ | ::<math>r=1600te^{-0.2t}</math> | ||
− | : | + | <span class="exam">where <math style="vertical-align: 0px">r</math> is measured in people/day and <math style="vertical-align: 0px">t</math> is measured in days since the start of the epidemic. |
− | <span class="exam"> | + | <span class="exam">(a) Sketch a graph of <math style="vertical-align: 0px">r</math> as a function of <math style="vertical-align: 0px">t.</math> |
− | <span class="exam">( | + | <span class="exam">(b) When are people getting sick fastest? |
− | <span class="exam">( | + | <span class="exam">(c) How many people get sick altogether? |
− | == [[007B_Sample Final | + | == [[007B_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == |
<span class="exam"> Find the volume of the solid obtained by rotating about the <math>x</math>-axis the region bounded by <math style="vertical-align: -4px">y=\sqrt{1-x^2}</math> and <math>y=0.</math> | <span class="exam"> Find the volume of the solid obtained by rotating about the <math>x</math>-axis the region bounded by <math style="vertical-align: -4px">y=\sqrt{1-x^2}</math> and <math>y=0.</math> | ||
− | == [[007B_Sample Final | + | == [[007B_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == |
<span class="exam"> Find the following integrals. | <span class="exam"> Find the following integrals. | ||
Line 37: | Line 39: | ||
<span class="exam">(b) <math>\int \sin^3(x)\cos^2(x)~dx</math> | <span class="exam">(b) <math>\int \sin^3(x)\cos^2(x)~dx</math> | ||
− | == [[007B_Sample Final | + | == [[007B_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == |
− | <span class="exam"> | + | |
+ | <span class="exam">Does the following integral converge or diverge? Prove your answer! | ||
− | + | ::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math> | |
− | <span class=" | + | == [[007B_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == |
− | + | <span class="exam">Solve the following differential equations: | |
− | <span class="exam"> | + | <span class="exam">(a) <math style="vertical-align: -13px">\frac{dy}{dx}=3y,</math> where <math style="vertical-align: -5px">y_0=2</math> for <math style="vertical-align: -3px">x_0=0</math> |
− | + | <span class="exam">(b) <math style="vertical-align: -13px">\frac{dy}{dx}=(y-1)(y-2)</math> where <math style="vertical-align: -5px>y_0=0</math> for <math style="vertical-align: -3px">x_0=0</math> |
Latest revision as of 23:56, 2 December 2017
This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Divide the interval into four subintervals of equal length and compute the left-endpoint Riemann sum of
Problem 2
Evaluate the following integrals.
(a)
(b)
(c)
Problem 3
The rate at which people get sick during an epidemic of the flu can be approximated by
where is measured in people/day and is measured in days since the start of the epidemic.
(a) Sketch a graph of as a function of
(b) When are people getting sick fastest?
(c) How many people get sick altogether?
Problem 4
Find the volume of the solid obtained by rotating about the -axis the region bounded by and
Problem 5
Find the following integrals.
(a)
(b)
Problem 6
Does the following integral converge or diverge? Prove your answer!
Problem 7
Solve the following differential equations:
(a) where for
(b) where for