Difference between revisions of "007A Sample Final 1"

From Grad Wiki
Jump to navigation Jump to search
Line 66: Line 66:
 
== [[007A_Sample Final 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 
== [[007A_Sample Final 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
<span class="exam">Given the function &nbsp;<math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>,
+
text
 
 
<span class="exam">(a) Find the intervals in which the function increases or decreases.
 
 
 
<span class="exam">(b) Find the local maximum and local minimum values.
 
 
 
<span class="exam">(c) Find the intervals in which the function concaves upward or concaves downward.
 
 
 
<span class="exam">(d) Find the inflection point(s).
 
 
 
<span class="exam">(e) Use the above information (a) to (d) to sketch the graph of &nbsp;<math style="vertical-align: -5px">y=f(x)</math>.
 
  
 
== [[007A_Sample Final 1,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
== [[007A_Sample Final 1,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==

Revision as of 21:51, 2 December 2017

This is a sample, and is meant to represent the material usually covered in Math 7A for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)  

(b)  

(c)  

 Problem 2 

Consider the following piecewise defined function:

(a) Show that    is continuous at  

(b) Using the limit definition of the derivative, and computing the limits from both sides, show that    is differentiable at  .

 Problem 3 

Find the derivatives of the following functions.

(a)  

(b)  

 Problem 4 

text

 Problem 5 

If   compute    and find the equation for the tangent line at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0=\frac{\sqrt{3}}{4}.}

You may leave your answers in point-slope form.

 Problem 6 

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?

 Problem 7 

Consider the following function:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=3x-2\sin x+7}

(a) Use the Intermediate Value Theorem to show that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has at least one zero.

(b) Use the Mean Value Theorem to show that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has at most one zero.

 Problem 8 

A curve is defined implicitly by the equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3+y^3=6xy.}

(a) Using implicit differentiation, compute  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}} .

(b) Find an equation of the tangent line to the curve  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3+y^3=6xy}   at the point  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3,3)} .

 Problem 9 

text

 Problem 10 

If a resistor of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R}   ohms is connected across a battery of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E}   volts with internal resistance  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r}   ohms, then the power (in watts) in the external resistor is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P=\frac{E^2R}{(R+r)^2}.}

If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r}   are fixed but  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R}   varies, what is the maximum value of the power?