Difference between revisions of "009C Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
<span class="exam">(b) Find the equation of the tangent line to the curve at the origin.
 
<span class="exam">(b) Find the equation of the tangent line to the curve at the origin.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 10 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' What two pieces of information do you need to write the equation of a line?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;You need the slope of the line and a point on the line.
 
|-
 
|'''2.''' What is the slope of the tangent line of a parametric curve?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;The slope is &nbsp;<math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a) &nbsp;
 
|-
 
|Insert graph
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to find the slope of the tangent line.
 
|-
 
|Since &nbsp; <math style="vertical-align: -14px">\frac{dy}{dt}=3t^2-1</math> &nbsp; and &nbsp; <math style="vertical-align: -14px">\frac{dx}{dt}=2t,</math>&nbsp; we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, the origin corresponds to <math>x=0</math> and <math>y=0.</math>
 
|-
 
|This gives us two equations. When we solve for <math>t,</math> we get <math>t=0.</math>
 
|-
 
|Plugging in <math>t=0</math> into
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t},</math>
 
|-
 
|we see that <math>\frac{dy}{dx}</math> is undefined at <math>t=0.</math>
 
|-
 
|So, there is no tangent line at the origin.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; See above
 
|-
 
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp;  There is no tangent line at the origin.
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:57, 2 December 2017

A curve is described parametrically by

(a) Sketch the curve for  

(b) Find the equation of the tangent line to the curve at the origin.


Solution


Detailed Solution


Return to Sample Exam