Difference between revisions of "009C Sample Final 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
::<math>\sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}</math>
 
::<math>\sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|'''Limit Comparison Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences.
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math>\lim_{n\rightarrow \infty} \frac{a_n}{b_n}=L,</math>&nbsp; where &nbsp;<math>L</math> &nbsp; is a positive real number,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; either both converge or both diverge.
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we note that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{n^3+7n}{\sqrt{1+n^{10}}}>0</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|This means that we can use a comparison test on this series.
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px">a_n=\frac{n^3+7n}{\sqrt{1+n^{10}}}.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px">b_n=\frac{1}{n^2}.</math>
 
|-
 
|We want to compare the series in this problem with
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.</math>
 
|-
 
|This is a &nbsp;<math style="vertical-align: -4px">p</math>-series with &nbsp;<math style="vertical-align: -4px">p=2.</math>
 
|-
 
|Hence, &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} \frac{a_n}{b_n}} & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{(\frac{n^3+7n}{\sqrt{1+n^{10}}})}{(\frac{1}{n^2})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}} \bigg(\frac{\frac{1}{n^5}}{\frac{1}{n^5}}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{1+\frac{7}{n^4}}{\sqrt{\frac{1}{n^{10}}+1}}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|-
 
|Therefore, the series
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}</math>
 
|-
 
|converges by the Limit Comparison Test.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; converges
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:43, 2 December 2017

Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.


Solution


Detailed Solution


Return to Sample Exam