Difference between revisions of "009C Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
<span class="exam">(b) Test if the series converges conditionally. Give reasons for your answer.
 
<span class="exam">(b) Test if the series converges conditionally. Give reasons for your answer.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''absolutely convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; converges.
 
|-
 
|'''2.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''conditionally convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; diverges and the series &nbsp;<math>\sum a_n</math>&nbsp; converges.
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we take the absolute value of the terms in the original series.
 
|-
 
|Let &nbsp;<math style="vertical-align: -20px">a_n=\frac{(-1)^n}{\sqrt{n}}.</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^\infty |a_n|} & = & \displaystyle{\sum_{n=1}^\infty \bigg|\frac{(-1)^n}{\sqrt{n}}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=1}^\infty \frac{1}{\sqrt{n}}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|This series is a &nbsp;<math style="vertical-align: -5px">p</math>-series with &nbsp;<math style="vertical-align: -14px">p=\frac{1}{2}.</math>&nbsp;
 
|-
 
|Therefore, it diverges.
 
|-
 
|Hence, the series
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math>
 
|-
 
|is not absolutely convergent.
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; not absolutely convergent
 
|-
 
|&nbsp;&nbsp; '''(b)'''
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:41, 2 December 2017

Consider the series

(a) Test if the series converges absolutely. Give reasons for your answer.

(b) Test if the series converges conditionally. Give reasons for your answer.


Solution


Detailed Solution


Return to Sample Exam