Difference between revisions of "009C Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> ::<span class="exam">b) <mat...")
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Compute
+
<span class="exam"> Consider the series
  
::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math>
+
::<math>\sum_{n=2}^\infty \frac{(-1)^n}{\sqrt{n}}.</math>
  
::<span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
+
<span class="exam">(a) Test if the series converges absolutely. Give reasons for your answer.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(b) Test if the series converges conditionally. Give reasons for your answer.
!Foundations: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''Solution:'''
+
<hr>
 +
[[009C Sample Final 3, Problem 2 Solution|'''<u>Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Final 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)'''
 
|-
 
|&nbsp;&nbsp; '''(b)'''
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:41, 2 December 2017

Consider the series

(a) Test if the series converges absolutely. Give reasons for your answer.

(b) Test if the series converges conditionally. Give reasons for your answer.


Solution


Detailed Solution


Return to Sample Exam