Difference between revisions of "009C Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
 
<span class="exam">(b) &nbsp;<math style="vertical-align: -15px">a_n=\cos(n\pi)\bigg(\frac{1+n}{n}\bigg)^n</math>
 
<span class="exam">(b) &nbsp;<math style="vertical-align: -15px">a_n=\cos(n\pi)\bigg(\frac{1+n}{n}\bigg)^n</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 1 Solution|'''<u>Solution</u>''']]
|-
 
|'''L'Hôpital's Rule'''
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(1+\frac{1}{2n}\bigg)^n.}
 
\end{array}</math>
 
|-
 
|We then take the natural log of both sides to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(1+\frac{1}{2n}\bigg)^n\bigg).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We can interchange limits and continuous functions.
 
|-
 
|Therefore, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(1+\frac{1}{2n}\bigg)^n}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1+\frac{1}{2n}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}.}
 
\end{array}</math>
 
|-
 
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2x}\bigg)}{\frac{1}{x}}}\\
 
&&\\
 
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{2x}{2x+1}\big(\frac{-1}{2x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{1}{2}\bigg(\frac{2x}{2x+1}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -13px">\ln y= \frac{1}{2},</math>&nbsp; we know
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{\frac{1}{2}}.</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty}\cos(n\pi)\bigg(\frac{1+n}{n}\bigg)^n=\lim_{n\rightarrow \infty} (-1)^n\bigg(\frac{1+n}{n}\bigg)^n.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, let
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{1+n}{n}\bigg)^n.}
 
\end{array}</math>
 
|-
 
|We then take the natural log of both sides to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(\frac{1+n}{n}\bigg)^n\bigg).</math>
 
|-
 
|We can interchange limits and continuous functions.
 
|-
 
|Therefore, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{1+n}{n}\bigg)^n}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{1+n}{n}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}.}
 
\end{array}</math>
 
|-
 
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{1+x}{x}\bigg)}{\frac{1}{x}}}\\
 
&&\\
 
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x}{1+x}\big(\frac{-1}{x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x}{1+x}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -4px">\ln y= 1,</math>&nbsp; we know
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e.</math>
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \bigg(\frac{1+n}{n}\bigg)^n\neq 0,</math>
 
|-
 
|we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} a_n} & = & \displaystyle{\lim_{n\rightarrow \infty} (-1)^n\bigg(\frac{1+n}{n}\bigg)^n}\\
 
&&\\
 
& = & \displaystyle{\text{DNE}.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;<math>e^{\frac{1}{2}}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;<math>\text{DNE}</math>
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:39, 2 December 2017

Which of the following sequences    converges? Which diverges? Give reasons for your answers!

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam