Difference between revisions of "009C Sample Final 2, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
::::::<span class="exam"><math>r=\sin(2\theta).</math>
+
::<span class="exam"><math>r=\sin(2\theta).</math>
  
::<span class="exam">a) Sketch the curve.
+
<span class="exam">(a) Sketch the curve.
  
::<span class="exam">b) Compute <math>y'=\frac{dy}{dx}.</math>
+
<span class="exam">(b) Compute &nbsp;<math style="vertical-align: -14px">y'=\frac{dy}{dx}.</math>
  
::<span class="exam">c) Compute <math>y''=\frac{d^2y}{dx^2}.</math>
+
<span class="exam">(c) Compute &nbsp;<math style="vertical-align: -14px">y''=\frac{d^2y}{dx^2}.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 9 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009C Sample Final 2, Problem 9 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)'''
 
|-
 
|&nbsp;&nbsp; '''(b)'''
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:36, 2 December 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute  

(c) Compute  


Solution


Detailed Solution


Return to Sample Exam