Difference between revisions of "009C Sample Final 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam">(a) Find the radius of convergence for the power series ::<math>\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}.</math> <span class="exam">(b) Find the inter...")
 
Line 5: Line 5:
 
<span class="exam">(b) Find the interval of convergence of the above series.
 
<span class="exam">(b) Find the interval of convergence of the above series.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 4 Solution|'''<u>Solution</u>''']]
|-
 
|'''Ratio Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We use the Ratio Test to determine the radius of convergence.
 
|-
 
|We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(-1)^{n+1}(x)^{n+1}}{(n+1)}\cdot\frac{n}{(-1)^n(x)^n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|(-1)(x)\frac{n}{n+1}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |x|\frac{n}{n+1}}\\
 
&&\\
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} \frac{n}{n+1}}\\
 
&&\\
 
& = & \displaystyle{|x|.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|The Ratio Test tells us this series is absolutely convergent if &nbsp;<math style="vertical-align: -5px">|x|<1.</math>
 
|-
 
|Hence, the Radius of Convergence of this series is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, note that &nbsp;<math style="vertical-align: -5px">|x|<1</math>&nbsp; corresponds to the interval &nbsp;<math style="vertical-align: -4px">(-1,1).</math>
 
|-
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|-
 
|for convergence since the Ratio Test is inconclusive when &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|First, let &nbsp;<math style="vertical-align: -1px">x=1.</math> 
 
|-
 
|Then, the series becomes &nbsp;<math>\sum_{n=1}^\infty (-1)^n \frac{1}{n}.</math>
 
|-
 
|This is an alternating series.
 
|-
 
|Let &nbsp;<math style="vertical-align: -15px">b_n=\frac{1}{n}.</math>.
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{n}\ge 0</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|The sequence &nbsp;<math>\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+1}<\frac{1}{n}</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} b_n=\lim_{n\rightarrow \infty} \frac{1}{n}=0.</math>
 
|-
 
|Therefore, this series converges by the Alternating Series Test
 
|-
 
|and we include &nbsp;<math style="vertical-align: -1px">x=1</math>&nbsp; in our interval.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, let &nbsp;<math style="vertical-align: -1px">x=-1.</math>
 
|-
 
|Then, the series becomes &nbsp;<math>\sum_{n=1}^\infty \frac{1}{n}.</math>
 
|-
 
|This is a &nbsp;<math>p</math>-series with &nbsp;<math>p=1.</math>&nbsp; Hence, the series diverges.
 
|-
 
|Therefore, we do not include &nbsp;<math style="vertical-align: -1px">x=-1</math>&nbsp; in our interval.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|The interval of convergence is &nbsp;<math style="vertical-align: -4px">(-1,1].</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>(-1,1]</math>
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:27, 2 December 2017

(a) Find the radius of convergence for the power series

(b) Find the interval of convergence of the above series.


Solution


Detailed Solution


Return to Sample Exam