Difference between revisions of "009C Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span class="exam">Determine if the following series converges or diverges. Please give your reason(s).
+
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
  
<span class="exam">(a) &nbsp;<math>\sum_{n=0}^{+\infty} \frac{n!}{(2n)!}</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^{\infty} \frac{n!}{(2n)!}</math>  
  
<span class="exam">(b) &nbsp;<math>\sum_{n=0}^{+\infty} (-1)^n \frac{1}{n+1}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{\infty} (-1)^n\frac{1}{n+1}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|For
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1},</math>
 
|-
 
|we notice that this series is alternating.
 
|-
 
|Let &nbsp;<math style="vertical-align: -16px"> b_n=\frac{1}{n+1}.</math>
 
|-
 
|The sequence &nbsp;<math style="vertical-align: -5px">\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+2}<\frac{1}{n+1}</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 0.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n+1}=0.</math>
 
|-
 
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1}</math> &nbsp; converges
 
|-
 
|by the Alternating Series Test.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)'''
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp;&nbsp; converges
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:24, 2 December 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam