Difference between revisions of "009C Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
 
<span class="exam">(a) &nbsp;<math style="vertical-align: -14px">4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math>
 
<span class="exam">(a) &nbsp;<math style="vertical-align: -14px">4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math>
  
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' The sum of a convergent geometric series is &nbsp; <math>\frac{a}{1-r}</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; where &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is the ratio of the geometric series
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp;<math style="vertical-align: 0px">a</math>&nbsp; is the first term of the series.
 
|-
 
|'''2.''' The &nbsp;<math style="vertical-align: 0px">n</math>th partial sum, &nbsp;<math style="vertical-align: -3px">s_n</math>&nbsp; for a series &nbsp;<math>\sum_{n=1}^\infty a_n </math>&nbsp; is defined as
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=\sum_{i=1}^n a_i.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -3px">a_n</math>&nbsp; be the &nbsp;<math style="vertical-align: 0px">n</math>th term of this sum.
 
|-
 
|We notice that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{a_2}{a_1}=\frac{-2}{4},~\frac{a_3}{a_2}=\frac{1}{-2},</math>&nbsp; and &nbsp;<math>\frac{a_4}{a_2}=\frac{-1}{2}.</math>
 
|-
 
|So, this is a geometric series with &nbsp;<math style="vertical-align: -14px">r=-\frac{1}{2}.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">|r|<1,</math>&nbsp; this series converges.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Hence, the sum of this geometric series is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{a_1}{1-r}} & = & \displaystyle{\frac{4}{1-(-\frac{1}{2})}}\\
 
&&\\
 
& = & \displaystyle{\frac{4}{\frac{3}{2}}}\\
 
&&\\
 
& = & \displaystyle{\frac{8}{3}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by using partial fraction decomposition. Let
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{(2x-1)(2x+1)}=\frac{A}{2x-1}+\frac{B}{2x+1}.</math>
 
|-
 
|If we multiply this equation by &nbsp;<math style="vertical-align: -5px">(2x-1)(2x+1),</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>1=A(2x+1)+B(2x-1).</math>
 
|-
 
|If we let &nbsp;<math style="vertical-align: -14px">x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">A=\frac{1}{2}.</math>
 
|-
 
|If we let &nbsp;<math style="vertical-align: -14px">x=-\frac{1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">B=-\frac{1}{2}.</math>
 
|-
 
|So, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^\infty \frac{1}{(2n-1)(2n+1)}} & = & \displaystyle{\sum_{n=1}^\infty \frac{\frac{1}{2}}{2n-1}+\frac{-\frac{1}{2}}{2n+1}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2} \sum_{n=1}^\infty \frac{1}{2n-1}-\frac{1}{2n+1}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we look at the partial sums, &nbsp;<math>s_n</math>&nbsp; of this series.
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_1=\frac{1}{2}\bigg(1-\frac{1}{3}\bigg).</math>
 
|-
 
|Also, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{s_2} & = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{5}\bigg)}
 
\end{array}</math>
 
|-
 
|and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{s_3} & = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{7}\bigg).}
 
\end{array}</math>
 
|-
 
|If we compare &nbsp;<math>s_1,s_2,s_3,</math>&nbsp; we notice a pattern.
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>s_n=\frac{1}{2}\bigg(1-\frac{1}{2n+1}\bigg).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, to calculate the sum of this series we need to calculate
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} s_n.</math>
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} s_n} & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{1}{2}\bigg(1-\frac{1}{2n+1}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}.}
 
\end{array}</math>
 
|-
 
|Since the partial sums converge,  the series converges and the sum of the series is &nbsp;<math style="vertical-align: -15px">\frac{1}{2}.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;<math>\frac{8}{3}</math>
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;<math>\frac{1}{2}</math>
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:22, 2 December 2017

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam