Difference between revisions of "009C Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
<span class="exam">(b) &nbsp;<math style="vertical-align: -15px">a_n=\bigg(\frac{n}{n+1}\bigg)^n</math>
 
<span class="exam">(b) &nbsp;<math style="vertical-align: -15px">a_n=\bigg(\frac{n}{n+1}\bigg)^n</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 1 Solution|'''<u>Solution</u>''']]
|-
 
|'''L'Hopital's Rule'''
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math>\lim_{x\rightarrow \infty} f(x)</math> &nbsp; and &nbsp;<math>\lim_{x\rightarrow \infty} g(x)</math> &nbsp; are both zero or both &nbsp; <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> &nbsp; is finite or &nbsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;then &nbsp;<math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we notice that &nbsp;<math>\lim_{n\rightarrow \infty} \frac{\ln(n)}{\ln(n+1)}</math>&nbsp; has the form &nbsp;<math>\frac{\infty}{\infty}.</math>
 
|-
 
|So, we can use L'Hopital's Rule. To begin, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty}\frac{\ln(n)}{\ln(n+1)}=\lim_{x\rightarrow \infty} \frac{\ln(x)}{\ln(x+1)}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, using L'Hopital's rule, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty}\frac{\ln(n)}{\ln(n+1)}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x+1}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x+1}{x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} 1+\frac{1}{x}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.}
 
\end{array}</math>
 
|-
 
|We then take the natural log of both sides to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n\bigg).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We can interchange limits and continuous functions.
 
|-
 
|Therefore, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{n}{n+1}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.}
 
\end{array}</math>
 
|-
 
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\
 
&&\\
 
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x+1}{x}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x^2}{x(x+1)}}\\
 
&&\\
 
& = & \displaystyle{-1.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Since &nbsp;<math>\ln y= -1,</math>&nbsp; we know
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>e^{-1}</math>
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:20, 2 December 2017

Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam