Difference between revisions of "009C Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam"> Find the interval of convergence of the following series. ::<math>\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math> <hr> 009C Sample Final 1, P...")
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> Find the interval of convergence of the following series.
 
<span class="exam"> Find the interval of convergence of the following series.
  
::::::<math>\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math>
+
::<math>\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 4 Solution|'''<u>Solution</u>''']]
|-
 
|Ratio Test
 
|-
 
|Check endpoints of interval
 
|}
 
  
'''Solution:'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Final 1, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 1: &nbsp;
 
|-
 
|We proceed using the ratio test to find the interval of convergence. So, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(x+2)^{n+1}}{(n+1)^2}}\frac{n^2}{(-1)^n(x+2)^n}\bigg|\\
 
&&\\
 
& = & \displaystyle{|x+2|\lim_{n \rightarrow \infty}\frac{n^2}{(n+1)^2}}\\
 
&&\\
 
& = & \displaystyle{|x+2|\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^2}\\
 
&&\\
 
& = & \displaystyle{|x+2|\bigg(\lim_{n \rightarrow \infty}\frac{n}{n+1}\bigg)^2}\\
 
&&\\
 
& = & \displaystyle{|x+2|(1)^2}\\
 
&&\\
 
& = & \displaystyle{|x+2|}\\
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, we have <math>|x+2|<1</math>. Hence, our interval is <math>(-3,-1)</math>. But, we still need to check the endpoints of this interval
 
|-
 
|to see if they are included in the interval of convergence.
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|First, we let <math>x=-1</math>. Then, our series becomes <math>sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}</math>.
 
|-
 
|Since <math>n^2<(n+1)^2</math>, we have <math>\frac{1}{(n+1)^2}<\frac{1}{n^2}</math>. Thus, <math>\frac{1}{n^2}</math> is decreasing.
 
|-
 
|So, <math>sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}</math> converges by the Alternating Series Test.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Now, we let <math>x=-3</math>. Then, our series becomes
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=0}^{\infty} (-1)^n \frac{(-1)^n}{n^2}} & = & \displaystyle{\sum_{n=0}^{\infty} (-1)^{2n} \frac{1}{n^2}}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=0}^{\infty} \frac{1}{n^2}}\\
 
\end{array}</math>
 
|-
 
|This is a convergent series by the p-test.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 5: &nbsp;
 
|-
 
|Thus, the interval of convergence for this series is <math>[-3,-1]</math>.
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
| <math>[-3,-1]</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:04, 2 December 2017

Find the interval of convergence of the following series.


Solution


Detailed Solution


Return to Sample Exam