Difference between revisions of "009B Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<span class="exam">(b) &nbsp;<math>\int \sin^3(x)\cos^2(x)~dx</math>
 
<span class="exam">(b) &nbsp;<math>\int \sin^3(x)\cos^2(x)~dx</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 3, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' Integration by parts tells us that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|'''2.''' Since &nbsp;<math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sin^2x=1-\cos^2x.</math>
 
|-
 
|
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|To calculate this integral, we use integration by parts.
 
|-
 
|Let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=\cos xdx.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: 0px">du=dx</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">v=\sin x.</math>
 
|-
 
|Therefore, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int x\cos(x)~dx=x\sin x -\int \sin x~dx.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Then, we integrate to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math> \int x\cos(x)~dx=x\sin x +\cos x+C.</math>
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we use the identity <math>\sin^2 x=1-\cos^2 x</math> to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \sin^3(x)\cos^2(x)~dx} & = & \displaystyle{\int \sin^2 x (\cos^2 x) \sin x~dx}\\
 
&&\\
 
& = & \displaystyle{\int (1-\cos^2 x)(\cos^2 x) \sin x~dx.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we use <math>u</math>-substitution.
 
|-
 
|Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math> and <math>-du=\sin(x)dx.</math>
 
|-
 
|Therefore, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \sin^3(x)\cos^2(x)~dx} & = & \displaystyle{\int (-1)(1-u^2)u^2~du}\\
 
&&\\
 
& = & \displaystyle{\int u^4-u^2~du}\\
 
&&\\
 
& = & \displaystyle{\frac{u^5}{5}-\frac{u^3}{3}+C}\\
 
&&\\
 
& = & \displaystyle{\frac{\cos^5 x}{5}-\frac{\cos^3 x}{3}+C.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>x\sin x +\cos x+C</math>
 
|-
 
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>\frac{\cos^5 x}{5}-\frac{\cos^3 x}{3}+C</math>
 
|}
 
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:45, 2 December 2017

Find the following integrals.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam