Difference between revisions of "009B Sample Final 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Find the volume of the solid obtained by rotating about the &nbsp;<math>x</math>-axis the region bounded by &nbsp;<math style="vertical-align: -4px">y=\sqrt{1-x^2}</math>&nbsp; and &nbsp;<math>y=0.</math>
+
<span class="exam"> Find the volume of the solid obtained by rotating about the &nbsp;<math>x</math>-axis the region bounded by &nbsp;<math style="vertical-align: -4px">y=\sqrt{1-x^2}</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">y=0.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 3, Problem 4 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' You can find the intersection points of two functions, say &nbsp; <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|'''2.''' The volume of a solid obtained by rotating a region around the &nbsp;<math style="vertical-align: 0px">x</math>-axis using disk method is given by 
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \pi r^2~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is the radius of the disk.
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 3, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by finding the intersection points of the functions <math>y=\sqrt{1-x^2}</math> and <math>y=0.</math>
 
|-
 
|We need to solve <math>0=\sqrt{1-x^2}.</math>
 
|-
 
|If we square both sides, we get
 
|-
 
|<math>0=1-x^2.</math>
 
|-
 
|The solutions to this equation are <math>x=-1</math> and <math>x=1.</math>
 
|-
 
|Hence, we are interested in the region between <math>x=-1</math> and <math>x=1.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Using the disk method, the radius of each disk is given by <math>r=\sqrt{1-x^2}.</math>
 
|-
 
|Therefore, the volume of the solid is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{V} & = & \displaystyle{\int_{-1}^1 \pi (\sqrt{1-x^2})^2~dx}\\
 
&&\\
 
& = & \displaystyle{\int_{-1}^1 \pi (1-x^2)~dx}\\
 
&&\\
 
& = & \displaystyle{\pi\bigg(x-\frac{x^3}{3}\bigg)\bigg|_{-1}^1}\\
 
&&\\
 
& = & \displaystyle{\pi\bigg(1-\frac{1}{3}\bigg)-\pi\bigg(-1+\frac{1}{3}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{4\pi}{3}.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{4\pi}{3}</math>
 
|}
 
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:43, 2 December 2017

Find the volume of the solid obtained by rotating about the  -axis the region bounded by    and  


Solution


Detailed Solution


Return to Sample Exam