Difference between revisions of "009B Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam">Evaluate the following integrals or show that they are divergent: <span class="exam">(a)  <math>\int_1^\infty \frac{\ln x}{x^4}~dx</math> <span c...")
 
(5 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<span class="exam">(b) &nbsp;<math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math>
 
<span class="exam">(b) &nbsp;<math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 2, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' How could you write &nbsp; <math style="vertical-align: -14px">\int_0^{\infty} f(x)~dx</math> so that you can integrate?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; You can write &nbsp; <math>\int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.</math>
 
|-
 
|'''2.''' How could you write &nbsp; <math>\int_{0}^1 \frac{1}{x}~dx?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; The problem is that &nbsp;<math>\frac{1}{x}</math>&nbsp; is not continuous at &nbsp;<math style="vertical-align: 0px">x=0.</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; So, you can write &nbsp;<math style="vertical-align: -15px">\int_{0}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0} \int_{a}^1 \frac{1}{x}~dx.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 2, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|}
 
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:33, 2 December 2017

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam