Difference between revisions of "009B Sample Final 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the region bounded by the following two functions: ::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math styl...") |
Kayla Murray (talk | contribs) (Replaced content with "<span class="exam">Evaluate the following integrals or show that they are divergent: <span class="exam">(a) <math>\int_1^\infty \frac{\ln x}{x^4}~dx</math> <span c...") |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Evaluate the following integrals or show that they are divergent: |
− | |||
− | <span class="exam">a) | + | <span class="exam">(a) <math>\int_1^\infty \frac{\ln x}{x^4}~dx</math> |
− | <span class="exam">b) | + | <span class="exam">(b) <math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math> |
− | < | + | <hr> |
+ | [[009B Sample Final 2, Problem 7 Solution|'''<u>Solution</u>''']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''Solution | + | [[009B Sample Final 2, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 17:33, 2 December 2017
Evaluate the following integrals or show that they are divergent:
(a)
(b)