Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
::<math>y^3=x</math>
 
::<math>y^3=x</math>
  
<span class="exam">between <math style="vertical-align: -5px">(0,0)</math> and <math style="vertical-align: -5px">(1,1)</math> about the <math style="vertical-align: -4px">y</math>-axis.
+
<span class="exam">between &nbsp;<math style="vertical-align: -5px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(1,1)</math>&nbsp; about the &nbsp;<math style="vertical-align: -4px">y</math>-axis.
  
 
<span class="exam">(b) Find the length of the arc  
 
<span class="exam">(b) Find the length of the arc  
Line 9: Line 9:
 
::<math>y=1+9x^{\frac{3}{2}}</math>
 
::<math>y=1+9x^{\frac{3}{2}}</math>
  
<span class="exam">between the points <math style="vertical-align: -5px">(1,10)</math> and <math style="vertical-align: -5px">(4,73).</math>
+
<span class="exam">between the points &nbsp;<math style="vertical-align: -5px">(1,10)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(4,73).</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 2, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' The formula for the length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a curve &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; where &nbsp;<math style="vertical-align: -3px">a\leq x \leq b</math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>
 
|-
 
|'''2.''' The surface area &nbsp;<math style="vertical-align: 0px">S</math>&nbsp; of a function &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; rotated about the &nbsp;<math style="vertical-align: -4px">y</math>-axis is given by
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math>&nbsp; where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 2, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)''' 
 
|}
 
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:28, 2 December 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between    and    about the  -axis.

(b) Find the length of the arc

between the points    and  


Solution


Detailed Solution


Return to Sample Exam