Difference between revisions of "009B Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Find the volume of the solid obtained by rotating the region bounded by the curves <math>y=x</math> and <math>y=x^2</math> about the line <math>y=2.</math>
+
<span class="exam">Find the volume of the solid obtained by rotating the region bounded by the curves &nbsp;<math style="vertical-align: -4px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; about the line &nbsp;<math>y=2.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 2, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 2, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:26, 2 December 2017

Find the volume of the solid obtained by rotating the region bounded by the curves    and    about the line  


Solution


Detailed Solution


Return to Sample Exam