Difference between revisions of "009B Sample Final 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the region bounded by the following two functions: ::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math styl...") |
Kayla Murray (talk | contribs) |
||
| (6 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">(a) State '''both parts''' of the Fundamental Theorem of Calculus. |
| − | |||
| − | <span class="exam"> | + | <span class="exam">(b) Evaluate the integral |
| − | < | + | ::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math> |
| − | <span class="exam">c) | + | <span class="exam">(c) Compute |
| − | + | ::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | '''Solution | + | <hr> |
| + | [[009B Sample Final 2, Problem 1 Solution|'''<u>Solution</u>''']] | ||
| − | |||
| − | + | [[009B Sample Final 2, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']] | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 16:24, 2 December 2017
(a) State both parts of the Fundamental Theorem of Calculus.
(b) Evaluate the integral
(c) Compute