Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
Line 9: Line 9:
 
<span class="exam">is rotated about the &nbsp;<math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
 
<span class="exam">is rotated about the &nbsp;<math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 1, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' The formula for the length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a curve &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; where &nbsp;<math style="vertical-align: -3px">a\leq x \leq b</math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>
 
|-
 
|'''2.''' Recall
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int \sec x~dx=\ln|\sec(x)+\tan(x)|+C.</math>
 
|-
 
|'''3.''' The surface area &nbsp;<math style="vertical-align: 0px">S</math>&nbsp; of a function &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; rotated about the &nbsp;<math style="vertical-align: -4px">y</math>-axis is given by
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math>&nbsp; where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 1, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we calculate &nbsp;<math>\frac{dy}{dx}.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">y=\ln (\cos x),</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x.</math>
 
|-
 
|Using the formula given in the Foundations section, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_0^{\pi/3} \sqrt{1+(-\tan x)^2}~dx.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
L & = & \displaystyle{\int_0^{\pi/3} \sqrt{1+\tan^2 x}~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^{\pi/3} \sqrt{\sec^2x}~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^{\pi/3} \sec x ~dx}.\\
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Finally,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
L& = & \ln |\sec x+\tan x|\bigg|_0^{\frac{\pi}{3}}\\
 
&&\\
 
& = & \displaystyle{\ln \bigg|\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\bigg|-\ln|\sec 0 +\tan 0|}\\
 
&&\\
 
& = & \displaystyle{\ln |2+\sqrt{3}|-\ln|1|}\\
 
&&\\
 
& = & \displaystyle{\ln (2+\sqrt{3})}.
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by calculating &nbsp;<math>\frac{dy}{dx}.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">y=1-x^2,</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=-2x.</math>
 
|-
 
|Using the formula given in the Foundations section, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>S\,=\,\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have &nbsp;<math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math>
 
|-
 
|We proceed by &nbsp;<math>u</math>-substitution.
 
|-
 
|Let &nbsp;<math style="vertical-align: -2px">u=1+4x^2.</math> &nbsp;
 
|-
 
|Then, &nbsp; <math style="vertical-align: 0px">du=8xdx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{8}=xdx.</math>
 
|-
 
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|-
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=1+4x^2,</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=1+4(0)^2=1</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=1+4(1)^2=5.</math>
 
|-
 
|Thus, the integral becomes
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
S& = & \displaystyle{\int_1^5 \frac{2\pi}{8} \sqrt{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{4} \int_1^5 u^{\frac{1}{2}}~du.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we integrate to get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{S} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1}^{5}}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}u^{\frac{3}{2}}\bigg|_{1}^{5}}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}(5)^{\frac{3}{2}}-\frac{\pi}{6}(1)^{\frac{3}{2}}}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;<math>\ln (2+\sqrt{3})</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;<math>\frac{\pi}{6}(5\sqrt{5}-1)</math>
 
|}
 
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:21, 2 December 2017

(a) Find the length of the curve

.

(b) The curve

is rotated about the  -axis. Find the area of the resulting surface.


Solution


Detailed Solution


Return to Sample Exam