Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span class="exam">a) Find the length of the curve
+
<span class="exam">(a) Find the length of the curve
  
::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>.
+
::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>.
  
<span class="exam">b) The curve
+
<span class="exam">(b) The curve
  
::::::<math>y=1-x^2,~~~0\leq x \leq 1</math>
+
::<math>y=1-x^2,~~~0\leq x \leq 1</math>
  
<span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
+
<span class="exam">is rotated about the &nbsp;<math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 1, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|Recall:
 
|-
 
|'''1.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -5px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is
 
|-
 
|
 
::<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>
 
|-
 
|'''2.''' <math style="vertical-align: -14px">\int \sec x~dx=\ln|\sec(x)+\tan(x)|+C.</math>
 
|-
 
|'''3.''' The surface area <math style="vertical-align: 0px">S</math> of a function <math style="vertical-align: -5px">y=f(x)</math> rotated about the <math style="vertical-align: -4px">y</math>-axis is given by
 
|-
 
|
 
::<math style="vertical-align: -13px">S=\int 2\pi x\,ds</math>, where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.</math>
 
|}
 
  
'''Solution:'''
 
  
== Temp2 ==
+
[[009B Sample Final 1, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we calculate <math>\frac{dy}{dx}</math>.
 
|-
 
|Since <math style="vertical-align: -12px">y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x</math>.
 
|-
 
|Using the formula given in the Foundations section, we have
 
|-
 
|
 
::<math>L=\int_0^{\frac{\pi}{3}} \sqrt{1+(-\tan x)^2}~dx</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have:
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
L & = & \displaystyle{\int_0^{\frac{\pi}{3}} \sqrt{1+\tan^2 x}~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sqrt{\sec^2x}~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sec x ~dx}\\
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Finally,
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
L& = & \ln |\sec x+\tan x|\bigg|_0^{\frac{\pi}{3}}\\
 
&&\\
 
& = & \displaystyle{\ln \bigg|\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\bigg|-\ln|\sec 0 +\tan 0|}\\
 
&&\\
 
& = & \displaystyle{\ln |2+\sqrt{3}|-\ln|1|}\\
 
&&\\
 
& = & \displaystyle{\ln (2+\sqrt{3})}
 
\end{array}</math>
 
|-
 
|
 
|}
 
== Temp3 ==
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by calculating&thinsp; <math>\frac{dy}{dx}</math>&thinsp;.
 
|-
 
|Since <math style="vertical-align: -13px">y=1-x^2,~ \frac{dy}{dx}=-2x</math>.
 
|-
 
|Using the formula given in the Foundations section, we have
 
|-
 
|
 
::<math>S\,=\,\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have <math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math>
 
|-
 
|We proceed by using trig substitution. Let <math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta</math>. Then, <math style="vertical-align:  -12px">dx=\frac{1}{2}\sec^2\theta \,d\theta</math>.
 
|-
 
|So, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\
 
&&\\
 
& = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}.\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=\sec \theta</math>. Then, <math style="vertical-align: -1px">du=\sec \theta \tan \theta \,d\theta</math>.
 
|-
 
|So, the integral becomes
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int \frac{\pi}{2}u^2du}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}u^3+C}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}.\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|We started with a definite integral. So, using Step 2 and 3, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
S & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+4x^2}~dx}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3}\bigg|_0^1\\
 
&&\\
 
& = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\
 
\end{array}</math>
 
|}
 
 
== Temp4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' &nbsp;<math>\ln (2+\sqrt{3})</math>
 
|-
 
|'''(b)''' &nbsp;<math>\frac{\pi}{6}(5\sqrt{5}-1)</math>
 
|}
 
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:21, 2 December 2017

(a) Find the length of the curve

.

(b) The curve

is rotated about the  -axis. Find the area of the resulting surface.


Solution


Detailed Solution


Return to Sample Exam