Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam"> Evaluate the improper integrals: <span class="exam">(a)   <math>\int_0^{\infty} xe^{-x}~dx</math> <span class="exam">(b)   <math>\int_1^4 \...")
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam"> Evaluate the improper integrals:
 
<span class="exam"> Evaluate the improper integrals:
  
::<span class="exam">a) <math>\int_0^{\infty} xe^{-x}~dx</math>
+
<span class="exam">(a) &nbsp; <math>\int_0^{\infty} xe^{-x}~dx</math>
::<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(b) &nbsp; <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
!Foundations: &nbsp;
 
|-
 
|'''1.''' How could you write <math style="vertical-align: -14px">\int_0^{\infty} f(x)~dx</math> so that you can integrate?
 
|-
 
|
 
::You can write <math>\int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.</math>
 
|-
 
|'''2.''' How could you write <math>\int_{-1}^1 \frac{1}{x}~dx</math> ?
 
|-
 
|
 
::The problem is that&thinsp; <math>\frac{1}{x}</math> &thinsp;is not continuous at <math style="vertical-align: 0px">x=0</math>.
 
|-
 
|
 
::So, you can write <math style="vertical-align: -15px">\int_{-1}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0^-} \int_{-1}^a \frac{1}{x}~dx+\lim_{a\rightarrow 0^+} \int_a^1 \frac{1}{x}~dx</math>.
 
|-
 
|'''3.''' How would you integrate <math style="vertical-align: -13px">\int xe^x\,dx</math> ?
 
|-
 
|
 
::You can use integration by parts.
 
|-
 
|
 
::Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>.
 
|}
 
  
'''Solution:'''
+
<hr>
 +
[[009B Sample Final 1, Problem 6 Solution|'''<u>Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Final 1, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 1: &nbsp;
 
|-
 
|First, we write <math style="vertical-align: -14px">\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \int_0^a xe^{-x}~dx</math>.
 
|-
 
|Now, we proceed using integration by parts. Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^{-x}dx</math>. Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=-e^{-x}</math>.
 
|-
 
|Thus, the integral becomes
 
|-
 
|
 
::<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}\,dx.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=-x</math>. Then, <math style="vertical-align: 0px">du=-dx</math>.
 
|-
 
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|-
 
|Plugging in our values into the equation <math style="vertical-align: 0px">u=-x</math>, we get <math style="vertical-align: -5px">u_1=0</math> and <math style="vertical-align: -3px">u_2=-a</math>.
 
|-
 
|Thus, the integral becomes
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-\int_0^{-a}e^{u}~du}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}.\\
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we evaluate to get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}.\\
 
\end{array}</math>
 
|-
 
|Using L'Hôpital's Rule, we get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\
 
&&\\
 
& = & \displaystyle{0+1}\\
 
&&\\
 
& = & \displaystyle{1}.\\
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
== 3 ==
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write <math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}</math>.
 
|-
 
|Now, we proceed by <math style="vertical-align: 0px">u</math>-substitution. We let <math style="vertical-align: -1px">u=4-x</math>. Then, <math style="vertical-align: 0px">du=-dx</math>.
 
|-
 
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|-
 
|Plugging in our values into the equation <math style="vertical-align: -1px">u=4-x</math>, we get <math style="vertical-align: -5px">u_1=4-1=3</math>&thinsp; and <math style="vertical-align: -3px">u_2=4-a</math>.
 
|-
 
|Thus, the integral becomes
 
|-
 
|
 
::<math>\int_1^4 \frac{dx}{\sqrt{4-x}}\,=\,\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-1}{\sqrt{u}}~du.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We integrate to get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_1^4 \frac{dx}{\sqrt{4-x}}} & = & \displaystyle{\lim_{a\rightarrow 4} -2u^{\frac{1}{2}}\bigg|_{3}^{4-a}}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\
 
&&\\
 
& = & \displaystyle{2\sqrt{3}}.\\
 
\end{array}</math>
 
|}
 
 
== 4 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' &nbsp;<math style="vertical-align: -3px">1</math>
 
|-
 
|'''(b)''' &nbsp;<math style="vertical-align: -4px">2\sqrt{3}</math>
 
|}
 
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:19, 2 December 2017

Evaluate the improper integrals:

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam