Difference between revisions of "009A Sample Final 3"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 67: Line 67:
 
== [[009A_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
<span class="exam">Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure <math>P</math> and volume <math>V</math> satisfy the equation <math>PV=C</math> where <math>C</math> is a constant. Suppose that at a certain instant, the volume is <math>600 \text{ cm}^3,</math> the pressure is <math>150 \text{ kPa},</math> and the pressure is increasing at a rate of <math>20 \text{ kPa/min}.</math> At what rate is the volume decreasing at this instant?
+
<span class="exam">If &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; denotes the weight in pounds of an individual, and &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; denotes the time in months, then &nbsp;<math style="vertical-align: -13px">\frac{dW}{dt}</math>&nbsp; is the rate of weight gain or loss in lbs/mo. The current speed record for weight loss is a drop in weight from 487 pounds to 130 pounds over an eight month period. Show that the rate of weight loss exceeded 44 lbs/mo at some time during the eight month period.
  
 
== [[009A_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
Line 75: Line 75:
 
::<math>g(x)=(2x^2-8x)^{\frac{2}{3}}</math>
 
::<math>g(x)=(2x^2-8x)^{\frac{2}{3}}</math>
  
<span class="exam">(a) Find all critical points of <math>g</math> over the <math>x</math>-interval <math>[0,8].</math>
+
<span class="exam">(a) Find all critical points of &nbsp;<math style="vertical-align: -4px">g</math>&nbsp; over the &nbsp;<math style="vertical-align: 0px">x</math>-interval &nbsp;<math style="vertical-align: -5px">[0,8].</math>
  
<span class="exam">(b) Find absolute maximum and absolute minimum of <math>g</math> over <math>[0,8].</math>
+
<span class="exam">(b) Find absolute maximum and absolute minimum of &nbsp;<math style="vertical-align: -4px">g</math>&nbsp; over &nbsp;<math style="vertical-align: -5px">[0,8].</math>
  
 
== [[009A_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
Line 83: Line 83:
 
<span class="exam">Let &nbsp;<math style="vertical-align: -5px">y=\tan(x).</math>
 
<span class="exam">Let &nbsp;<math style="vertical-align: -5px">y=\tan(x).</math>
  
<span class="exam">(a) Find the differential &nbsp;<math style="vertical-align: -5px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">y=\tan (x)</math>&nbsp; at &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}.</math>  
+
<span class="exam">(a) Find the differential &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">y=\tan (x)</math>&nbsp; at &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}.</math>  
  
 
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -5px">\tan(0.885).</math>&nbsp; Hint: &nbsp;<math style="vertical-align: -15px">\frac{\pi}{4}\approx 0.785.</math>
 
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -5px">\tan(0.885).</math>&nbsp; Hint: &nbsp;<math style="vertical-align: -15px">\frac{\pi}{4}\approx 0.785.</math>

Latest revision as of 16:56, 2 December 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  

 Problem 2 

Find the derivative of the following functions:

(a)  

(b)  

 Problem 3 

Find the derivative of the following function using the limit definition of the derivative:

 Problem 4 

Discuss, without graphing, if the following function is continuous at  

If you think    is not continuous at    what kind of discontinuity is it?

 Problem 5 

Calculate the equation of the tangent line to the curve defined by    at the point,  

 Problem 6 

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  

 Problem 7 

Compute

(a)  

(b)  

(c)  

 Problem 8 

If    denotes the weight in pounds of an individual, and    denotes the time in months, then    is the rate of weight gain or loss in lbs/mo. The current speed record for weight loss is a drop in weight from 487 pounds to 130 pounds over an eight month period. Show that the rate of weight loss exceeded 44 lbs/mo at some time during the eight month period.

 Problem 9 

Let

(a) Find all critical points of    over the  -interval  

(b) Find absolute maximum and absolute minimum of    over  

 Problem 10 

Let  

(a) Find the differential    of    at  

(b) Use differentials to find an approximate value for    Hint: