Difference between revisions of "009A Sample Final 3"
Kayla Murray (talk | contribs) (→ Problem 1 ) |
Kayla Murray (talk | contribs) (→ Problem 8 ) |
||
(27 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
<span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason. | <span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason. | ||
− | + | <span class="exam">(a) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math> | |
− | + | <span class="exam">(b) <math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x),</math> given that <math style="vertical-align: -14px">\lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2</math> | |
− | + | <span class="exam">(c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math> | |
== [[009A_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009A_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Find the derivative of the following functions: |
− | + | <span class="exam">(a) <math style="vertical-align: -18px">g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <span class="exam">a) | ||
− | <span class="exam">b) | + | <span class="exam">(b) <math style="vertical-align: -5px">y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math> |
== [[009A_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | == [[009A_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
− | <span class="exam">Find the | + | <span class="exam">Find the derivative of the following function using the limit definition of the derivative: |
− | <span class="exam"> | + | ::<span class="exam"><math>f(x)=3x-x^2</math> |
− | |||
− | |||
== [[009A_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | == [[009A_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Discuss, without graphing, if the following function is continuous at <math style="vertical-align: 0px">x=0.</math> |
− | + | ::<math>f(x) = \left\{ | |
+ | \begin{array}{lr} | ||
+ | \frac{x}{|x|} & \text{if }x < 0\\ | ||
+ | 0 & \text{if }x = 0\\ | ||
+ | x-\cos x & \text{if }x > 0 | ||
+ | \end{array} | ||
+ | \right. | ||
+ | </math> | ||
− | <span class="exam"> | + | <span class="exam">If you think <math style="vertical-align: -4px">f</math> is not continuous at <math style="vertical-align: -4px">x=0,</math> what kind of discontinuity is it? |
== [[009A_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | == [[009A_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Calculate the equation of the tangent line to the curve defined by <math style="vertical-align: -4px">x^3+y^3=2xy</math> at the point, <math style="vertical-align: -5px">(1,1).</math> |
== [[009A_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | == [[009A_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Let |
− | + | ::<math>f(x)=4+8x^3-x^4</math> | |
− | <span class="exam">a) | + | <span class="exam">(a) Over what <math style="vertical-align: 0px">x</math>-intervals is <math style="vertical-align: -4px">f</math> increasing/decreasing? |
− | <span class="exam">b) | + | <span class="exam">(b) Find all critical points of <math style="vertical-align: -4px">f</math> and test each for local maximum and local minimum. |
+ | |||
+ | <span class="exam">(c) Over what <math style="vertical-align: 0px">x</math>-intervals is <math style="vertical-align: -4px">f</math> concave up/down? | ||
+ | |||
+ | <span class="exam">(d) Sketch the shape of the graph of <math style="vertical-align: -4px">f.</math> | ||
== [[009A_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | == [[009A_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Compute |
− | + | <span class="exam">(a) <math style="vertical-align: -18px">\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}</math> | |
− | <span class="exam"> | + | <span class="exam">(b) <math style="vertical-align: -16px">\lim_{x\rightarrow \pi} \frac{\sin x}{\pi-x}</math> |
− | <span class="exam"> | + | <span class="exam">(c) <math style="vertical-align: -16px">\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}</math> |
== [[009A_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | == [[009A_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">If <math style="vertical-align: 0px">W</math> denotes the weight in pounds of an individual, and <math style="vertical-align: 0px">t</math> denotes the time in months, then <math style="vertical-align: -13px">\frac{dW}{dt}</math> is the rate of weight gain or loss in lbs/mo. The current speed record for weight loss is a drop in weight from 487 pounds to 130 pounds over an eight month period. Show that the rate of weight loss exceeded 44 lbs/mo at some time during the eight month period. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== [[009A_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | == [[009A_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Let |
− | |||
− | |||
− | |||
− | |||
− | < | + | ::<math>g(x)=(2x^2-8x)^{\frac{2}{3}}</math> |
− | <span class="exam"> | + | <span class="exam">(a) Find all critical points of <math style="vertical-align: -4px">g</math> over the <math style="vertical-align: 0px">x</math>-interval <math style="vertical-align: -5px">[0,8].</math> |
− | <span class="exam"> | + | <span class="exam">(b) Find absolute maximum and absolute minimum of <math style="vertical-align: -4px">g</math> over <math style="vertical-align: -5px">[0,8].</math> |
== [[009A_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == | == [[009A_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Let <math style="vertical-align: -5px">y=\tan(x).</math> |
− | |||
− | |||
− | |||
− | <span class="exam">a) Find | + | <span class="exam">(a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -5px">y=\tan (x)</math> at <math style="vertical-align: -15px">x=\frac{\pi}{4}.</math> |
− | <span class="exam">b) | + | <span class="exam">(b) Use differentials to find an approximate value for <math style="vertical-align: -5px">\tan(0.885).</math> Hint: <math style="vertical-align: -15px">\frac{\pi}{4}\approx 0.785.</math> |
Latest revision as of 16:56, 2 December 2017
This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b) given that
(c)
Problem 2
Find the derivative of the following functions:
(a)
(b)
Problem 3
Find the derivative of the following function using the limit definition of the derivative:
Problem 4
Discuss, without graphing, if the following function is continuous at
If you think is not continuous at what kind of discontinuity is it?
Problem 5
Calculate the equation of the tangent line to the curve defined by at the point,
Problem 6
Let
(a) Over what -intervals is increasing/decreasing?
(b) Find all critical points of and test each for local maximum and local minimum.
(c) Over what -intervals is concave up/down?
(d) Sketch the shape of the graph of
Problem 7
Compute
(a)
(b)
(c)
Problem 8
If denotes the weight in pounds of an individual, and denotes the time in months, then is the rate of weight gain or loss in lbs/mo. The current speed record for weight loss is a drop in weight from 487 pounds to 130 pounds over an eight month period. Show that the rate of weight loss exceeded 44 lbs/mo at some time during the eight month period.
Problem 9
Let
(a) Find all critical points of over the -interval
(b) Find absolute maximum and absolute minimum of over
Problem 10
Let
(a) Find the differential of at
(b) Use differentials to find an approximate value for Hint: