Difference between revisions of "009A Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<span class="exam">Let <math>y=\tan(x).</math>
+
<span class="exam">Let &nbsp;<math style="vertical-align: -5px">y=\tan(x).</math>
  
<span class="exam">(a) Find the differential <math>dy</math> of <math>y=\tan (x)</math> at <math>x=\frac{\pi}{4}.</math>  
+
<span class="exam">(a) Find the differential &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">y=\tan (x)</math>&nbsp; at &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}.</math>  
  
<span class="exam">(b) Use differentials to find an approximate value for <math>\tan(0.885).</math> Hint: <math>\frac{\pi}{4}\approx 0.785.</math>
+
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -5px">\tan(0.885).</math>&nbsp; Hint: &nbsp;<math style="vertical-align: -15px">\frac{\pi}{4}\approx 0.785.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 3, Problem 10 Solution|'''<u>Solution</u>''']]
|-
 
|What is the differential  &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; at &nbsp;<math style="vertical-align: -1px">x=1?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Since &nbsp;<math style="vertical-align: -4px">x=1,</math>&nbsp; the differential is &nbsp;<math style="vertical-align: -4px">dy=2xdx=2dx.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 3, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we find the differential &nbsp;<math style="vertical-align: -4px">dy.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">y=\tan x,</math>&nbsp; we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,\sec^2 x\,dx.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we plug &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}</math>&nbsp; into the differential from Step 1.
 
|-
 
|So, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,\bigg(\sec\bigg(\frac{\pi}{4}\bigg)\bigg)^2\,dx\,=\,2\,dx.</math>
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:49, 2 December 2017

Let  

(a) Find the differential    of    at  

(b) Use differentials to find an approximate value for    Hint:  


Solution


Detailed Solution


Return to Sample Exam