Difference between revisions of "009A Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math> ::<span class="exam">b) <math st...")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Compute
+
<span class="exam">Let &nbsp;<math style="vertical-align: -5px">y=\tan(x).</math>
  
::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math>
+
<span class="exam">(a) Find the differential &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">y=\tan (x)</math>&nbsp; at &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}.</math>  
  
::<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin^2x}{3x}</math>
+
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -5px">\tan(0.885).</math>&nbsp; Hint: &nbsp;<math style="vertical-align: -15px">\frac{\pi}{4}\approx 0.785.</math>
  
::<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
+
<hr>
 +
[[009A Sample Final 3, Problem 10 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''Solution:'''
+
[[009A Sample Final 3, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:49, 2 December 2017

Let  

(a) Find the differential    of    at  

(b) Use differentials to find an approximate value for    Hint:  


Solution


Detailed Solution


Return to Sample Exam