Difference between revisions of "009A Sample Final 3, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
<span class="exam">(b) Find absolute maximum and absolute minimum of &nbsp;<math style="vertical-align: -4px">g</math>&nbsp; over &nbsp;<math style="vertical-align: -5px">[0,8].</math>
 
<span class="exam">(b) Find absolute maximum and absolute minimum of &nbsp;<math style="vertical-align: -4px">g</math>&nbsp; over &nbsp;<math style="vertical-align: -5px">[0,8].</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 3, Problem 9 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' To find the critical points for &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we set &nbsp;<math style="vertical-align: -5px">f'(x)=0</math>&nbsp; and solve for &nbsp;<math style="vertical-align: -1px">x.</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Also, we include the values of &nbsp;<math style="vertical-align: -1px">x</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; is undefined.
 
|-
 
|'''2.''' To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on an interval &nbsp;<math>[a,b],</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; we need to compare the &nbsp;<math style="vertical-align: -5px">y</math>&nbsp; values of our critical points with &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b).</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 3, Problem 9 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|To find the critical points, first we need to find &nbsp;<math style="vertical-align: -5px">g'(x).</math>
 
|-
 
|Using the Chain Rule, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{g'(x)} & = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(2x^2-8x)'}\\
 
&&\\
 
& = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(4x-8)}\\
 
&&\\
 
& = & \displaystyle{\frac{8x-16}{3\sqrt[3]{2x^2-8x}}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|First, we note that &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; is undefined when
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>3\sqrt[3]{2x^2-8x}=0.</math>
 
|-
 
|Solving for &nbsp;<math style="vertical-align: -4px">x,</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{0} & = & \displaystyle{2x^2-8x}\\
 
&&\\
 
& = & \displaystyle{x(2x-8).}
 
\end{array}</math>
 
|-
 
|Therefore, &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; is undefined when &nbsp;<math style="vertical-align: -4px">x=0,4.</math>&nbsp;
 
|-
 
|Now, we need to set &nbsp;<math style="vertical-align: -5px">g'(x)=0.</math>
 
|-
 
|So, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>8x-16=0.</math>
 
|-
 
|Solving, we get &nbsp;<math style="vertical-align: 0px">x=2.</math>
 
|-
 
|Thus, the critical points for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; are &nbsp;<math style="vertical-align: -5px">(0,0),(2,4),(4,0).</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;&nbsp;<math>(0,0),(2,4),(4,0).</math>
 
|-
 
|'''(b)'''
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:47, 2 December 2017

Let

(a) Find all critical points of    over the  -interval  

(b) Find absolute maximum and absolute minimum of    over  


Solution


Detailed Solution


Return to Sample Exam