Difference between revisions of "009A Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -16px">\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -16px">\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 3, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''L'Hôpital's Rule, Part 1'''
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow c}f(x)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow c}g(x)=0,</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g</math>&nbsp; are differentiable functions
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;on an open interval &nbsp;<math style="vertical-align: 0px">I</math>&nbsp; containing &nbsp;<math style="vertical-align: -5px">c,</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)\ne 0</math>&nbsp; on &nbsp;<math style="vertical-align: 0px">I</math>&nbsp; except possibly at &nbsp;<math style="vertical-align: 0px">c.</math>&nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;Then, &nbsp; <math style="vertical-align: -18px">\lim_{x\rightarrow c} \frac{f(x)}{g(x)}=\lim_{x\rightarrow c} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 3, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; into
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{x}{3-\sqrt{9-x}},</math>
 
|-
 
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we multiply the numerator and denominator by the conjugate of the denominator.
 
|-
 
|Hence, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}\frac{(3+\sqrt{9+x})}{(3+\sqrt{9+x})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{x(3+\sqrt{9+x})}{9-(9+x)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{x(3+\sqrt{9+x})}{-x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{3+\sqrt{9+x}}{-1}}\\
 
&&\\
 
& = & \displaystyle{ \frac{3+\sqrt{9}}{-1}}\\
 
&&\\
 
& = & \displaystyle{-\frac{6}{1}}\\
 
&&\\
 
& = & \displaystyle{-6.}
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using L'Hôpital's Rule. So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow \pi} \frac{\sin (x)}{\pi-x}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \pi}\frac{\cos(x)}{-1}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we plug in &nbsp;<math style="vertical-align: 0px">x=\pi</math>&nbsp; to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow \pi} \frac{\sin (x)}{\pi-x}} & = & \displaystyle{\frac{\cos(\pi)}{-1}}\\
 
&&\\
 
& = & \displaystyle{\frac{-1}{-1}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by factoring the numerator and denominator. We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}\,=\,\lim_{x\rightarrow -2}\frac{(x+2)(x-3)}{(x+2)(x^2-2x+4)}.</math>
 
|-
 
|So, we can cancel &nbsp;<math style="vertical-align: -2px">x+2</math>&nbsp; in the numerator and denominator. Thus, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}\,=\,\lim_{x\rightarrow -2}\frac{x-3}{x^2-2x+4}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we can just plug in &nbsp;<math style="vertical-align: -1px">x=-2</math>&nbsp; to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}} & = & \displaystyle{\frac{-2-3}{(-2)^2-2(-2)+4}}\\
 
&&\\
 
& = & \displaystyle{-\frac{5}{12}.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>-6</math>
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>1</math>
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>-\frac{5}{12}</math>
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:44, 2 December 2017

Compute

(a)  

(b)  

(c)  


Solution


Detailed Solution


Return to Sample Exam