Difference between revisions of "009A Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -16px">\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -16px">\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 3, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''L'Hôpital's Rule'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 3, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using L'Hôpital's Rule. So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow \pi} \frac{\sin (x)}{\pi-x}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \pi}\frac{\cos(x)}{-1}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we plug in &nbsp;<math style="vertical-align: 0px">x=\pi</math>&nbsp; to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow \pi} \frac{\sin (x)}{\pi-x}} & = & \displaystyle{\frac{\cos(\pi)}{-1}}\\
 
&&\\
 
& = & \displaystyle{\frac{-1}{-1}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by factoring the numerator and denominator. We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}\,=\,\lim_{x\rightarrow -2}\frac{(x+2)(x-3)}{(x+2)(x^2-2x+4)}.</math>
 
|-
 
|So, we can cancel &nbsp;<math style="vertical-align: -2px">x+2</math>&nbsp; in the numerator and denominator. Thus, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}\,=\,\lim_{x\rightarrow -2}\frac{x-3}{x^2-2x+4}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we can just plug in &nbsp;<math style="vertical-align: -1px">x=-2</math>&nbsp; to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}} & = & \displaystyle{\frac{-2-3}{(-2)^2-2(-2)+4}}\\
 
&&\\
 
& = & \displaystyle{\frac{-5}{12}.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>1</math>
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>\frac{-5}{12}</math>
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:44, 2 December 2017

Compute

(a)  

(b)  

(c)  


Solution


Detailed Solution


Return to Sample Exam