Difference between revisions of "009A Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
 
Line 7: Line 7:
 
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -2px">1.9^3</math>.
 
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -2px">1.9^3</math>.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 8 Solution|'''<u>Solution</u>''']]
|-
 
|What is the differential  &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; at &nbsp;<math style="vertical-align: -1px">x=1?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Since &nbsp;<math style="vertical-align: -4px">x=1,</math>&nbsp; the differential is &nbsp;<math style="vertical-align: -4px">dy=2xdx=2dx.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 1, Problem 8 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we find the differential &nbsp;<math style="vertical-align: -4px">dy.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">y=x^3,</math>&nbsp; we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,3x^2\,dx.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we plug &nbsp;<math style="vertical-align: 0px">x=2</math>&nbsp; into the differential from Step 1.
 
|-
 
|So, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,3(2)^2\,dx\,=\,12\,dx.</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we find &nbsp;<math style="vertical-align: 0px">dx.</math>&nbsp;  We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">dx=1.9-2=-0.1.</math>
 
|-
 
|Then, we plug this into the differential from part (a).
 
|-
 
|So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,12(-0.1)\,=\,-1.2.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we add the value for &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; to &nbsp;<math style="vertical-align: 0px">2^3</math>&nbsp; to get an
 
|-
 
|approximate value of &nbsp;<math style="vertical-align: -1px">1.9^3.</math>
 
|-
 
|Hence, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>1.9^3\,\approx \, 2^3+-1.2\,=\,6.8.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -5px">dy=12\,dx</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -1px">6.8</math> 
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:57, 2 December 2017

Let

(a) Find the differential    of    at  .

(b) Use differentials to find an approximate value for  .


Solution


Detailed Solution


Return to Sample Exam