Difference between revisions of "009A Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
Line 6: Line 6:
  
 
<span class="exam">(b) Find an equation of the tangent line to the curve &nbsp;<math style="vertical-align: -4px">x^3+y^3=6xy</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(3,3)</math>.
 
<span class="exam">(b) Find an equation of the tangent line to the curve &nbsp;<math style="vertical-align: -4px">x^3+y^3=6xy</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(3,3)</math>.
 +
<hr>
 +
[[009A Sample Final 1, Problem 7 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' What is the result of implicit differentiation of &nbsp;<math style="vertical-align: -4px">xy?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; It would be &nbsp;<math style="vertical-align: -13px">y+x\frac{dy}{dx}</math>&nbsp; by the Product Rule.
 
|-
 
|'''2.''' What two pieces of information do you need to write the equation of a line?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; You need the slope of the line and a point on the line.
 
|-
 
|'''3.''' What is the slope of the tangent line of a curve?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; The slope is &nbsp;<math style="vertical-align: -13px">m=\frac{dy}{dx}.</math>
 
|}
 
  
 +
[[009A Sample Final 1, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using implicit differentiation on the equation &nbsp;<math style="vertical-align: -4px">x^3+y^3=6xy,</math>&nbsp; we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>3x^2+3y^2\frac{dy}{dx}=6y+6x\frac{dy}{dx}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we move all the &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&nbsp; terms to one side of the equation.
 
|-
 
|So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>3x^2-6y=\frac{dy}{dx}(6x-3y^2).</math>
 
|-
 
|We solve to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -17px">\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}.</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we find the slope of the tangent line at the point &nbsp;<math style="vertical-align: -5px">(3,3).</math>
 
|-
 
|We plug  &nbsp;<math style="vertical-align: -5px">(3,3)</math>&nbsp; into the formula for &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&nbsp; we found in part (a).
 
|-
 
|So, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{m} & = & \displaystyle{\frac{3(3)^2-6(3)}{6(3)-3(3)^2}}\\
 
&&\\
 
& = & \displaystyle{-\frac{9}{9}}\\
 
&&\\
 
& = & \displaystyle{-1.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have the slope of the tangent line at &nbsp;<math style="vertical-align: -5px">(3,3)</math>&nbsp; and a point.
 
|-
 
|Thus, we can write the equation of the line.
 
|-
 
|So, the equation of the tangent line at &nbsp;<math style="vertical-align: -5px">(3,3)</math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>y\,=\,-1(x-3)+3.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math>\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math>y=-1(x-3)+3</math>
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:55, 2 December 2017

A curve is defined implicitly by the equation

(a) Using implicit differentiation, compute  .

(b) Find an equation of the tangent line to the curve    at the point  .


Solution


Detailed Solution


Return to Sample Exam