Difference between revisions of "009A Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
(11 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<span class="exam">A curve is defined implicitly by the equation | <span class="exam">A curve is defined implicitly by the equation | ||
− | + | ::<math>x^3+y^3=6xy.</math> | |
− | <span class="exam">a) Using implicit differentiation, compute & | + | <span class="exam">(a) Using implicit differentiation, compute <math style="vertical-align: -12px">\frac{dy}{dx}</math>. |
− | <span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>. | + | <span class="exam">(b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>. |
+ | <hr> | ||
+ | [[009A Sample Final 1, Problem 7 Solution|'''<u>Solution</u>''']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''Solution | + | [[009A Sample Final 1, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 15:55, 2 December 2017
A curve is defined implicitly by the equation
(a) Using implicit differentiation, compute .
(b) Find an equation of the tangent line to the curve at the point .