Difference between revisions of "009A Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam">A curve is defined implicitly by the equation
 
<span class="exam">A curve is defined implicitly by the equation
  
::::::<math>x^3+y^3=6xy</math>
+
::<math>x^3+y^3=6xy.</math>
  
<span class="exam">a) Using implicit differentiation, compute <math style="vertical-align: -12px">\frac{dy}{dx}</math>.
+
<span class="exam">(a) Using implicit differentiation, compute &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>.
  
<span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -4px">(3,3)</math>.
+
<span class="exam">(b) Find an equation of the tangent line to the curve &nbsp;<math style="vertical-align: -4px">x^3+y^3=6xy</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(3,3)</math>.
 +
<hr>
 +
[[009A Sample Final 1, Problem 7 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' What is the implicit differentiation of <math style="vertical-align: -4px">xy?</math>
 
|-
 
|
 
::It would be <math style="vertical-align: -13px">y+x\frac{dy}{dx}</math> by the Product Rule.
 
|-
 
|'''2.''' What two pieces of information do you need to write the equation of a line?
 
|-
 
|
 
::You need the slope of the line and a point on the line.
 
|-
 
|'''3.''' What is the slope of the tangent line of a curve?
 
|-
 
|
 
::The slope is <math style="vertical-align: -13px">m=\frac{dy}{dx}.</math>
 
|}
 
  
'''Solution:'''
+
[[009A Sample Final 1, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using implicit differentiation on the equation <math style="vertical-align: -4px">x^3+y^3=6xy,</math> we get
 
|-
 
|
 
::<math>3x^2+3y^2\frac{dy}{dx}=6y+6x\frac{dy}{dx}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we move all the <math style="vertical-align: -12px">\frac{dy}{dx}</math> terms to one side of the equation.
 
|-
 
|So, we have
 
|-
 
|
 
::<math>3x^2-6y=\frac{dy}{dx}(6x-3y^2).</math>
 
|-
 
|We solve to get <math style="vertical-align: -12px">\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}.</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we find the slope of the tangent line at the point <math style="vertical-align: -4px">(3,3)</math>.
 
|-
 
|We plug in <math style="vertical-align: -4px">(3,3)</math> into the formula for <math style="vertical-align: -12px">\frac{dy}{dx}</math> we found in part '''(a)'''.
 
|-
 
|So, we get
 
|-
 
|
 
::<math>m=\frac{3(3)^2-6(3)}{6(3)-3(3)^2}=\frac{9}{-9}=-1</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have the slope of the tangent line at <math style="vertical-align: -4px">(3,3)</math> and a point.
 
|-
 
|Thus, we can write the equation of the line.
 
|-
 
|So, the equation of the tangent line at <math style="vertical-align: -4px">(3,3)</math> is
 
|-
 
|
 
::<math>y=-1(x-3)+3</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math>\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}</math>
 
|-
 
|'''(b)''' <math>y=-1(x-3)+3</math>
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:55, 2 December 2017

A curve is defined implicitly by the equation

(a) Using implicit differentiation, compute  .

(b) Find an equation of the tangent line to the curve    at the point  .


Solution


Detailed Solution


Return to Sample Exam