Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam"> Consider the following function:
 
<span class="exam"> Consider the following function:
  
::::::<math>f(x)=3x-2\sin x+7</math>
+
::<math>f(x)=3x-2\sin x+7</math>
  
<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -3px">f(x)</math> has at least one zero.
+
<span class="exam">(a) Use the Intermediate Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at least one zero.
  
<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -3px">f(x)</math> has at most one zero.
+
<span class="exam">(b) Use the Mean Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 6 Solution|'''<u>Solution</u>''']]
|-
 
|Recall:
 
|-
 
|'''1. Intermediate Value Theorem''' If <math style="vertical-align: -5px">f(x)</math> is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: -1px">c</math> is any number
 
|-
 
|
 
::between <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: -1px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c</math>.
 
|-
 
|'''2. Mean Value Theorem''' Suppose <math style="vertical-align: -5px">f(x)</math> is a function that satisfies the following:
 
|-
 
|
 
::<math style="vertical-align: -5px">f(x)</math> is continuous on the closed interval <math style="vertical-align: -5px">[a,b]</math>.
 
|-
 
|
 
::<math style="vertical-align: -5px">f(x)</math> is differentiable on the open interval <math style="vertical-align: -5px">(a,b)</math>.
 
|-
 
|
 
::Then, there is a number <math style="vertical-align: -1px">c</math> such that <math style="vertical-align: -1px">a<c<b</math> and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}</math>.
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009A Sample Final 1, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First note that <math style="vertical-align: -3px">f(0)=7</math>.
 
|-
 
|Also, <math style="vertical-align: -3px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5)</math>.
 
|-
 
|Since <math style="vertical-align: -3px">-1\leq \sin(x) \leq 1</math>,
 
|-
 
|
 
::<math>-2\leq -2\sin(x) \leq 2</math>.
 
|-
 
|Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that
 
|-
 
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x)</math>. Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1</math>,
 
|-
 
|<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2</math>. So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5</math>.
 
|-
 
|Therefore, <math style="vertical-align: -5px">f'(x)</math> is always positive.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since <math style="vertical-align: -3px">f'(x)</math> is always positive, <math style="vertical-align: -3px">f(x)</math> is an increasing function.
 
|-
 
|Thus, <math style="vertical-align: -3px">f(x)</math> has at most one zero.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0</math>, there exists <math style="vertical-align: -1px">x</math> with <math style="vertical-align: -1px">-5<x<0</math> such that
 
|-
 
|<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero.
 
|-
 
|'''(b)''' Since <math style="vertical-align: -3px">f'(x)</math> is always positive, <math style="vertical-align: -3px">f(x)</math> is an increasing function.
 
|-
 
|Thus, <math style="vertical-align: -3px">f(x)</math> has at most one zero.
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:53, 2 December 2017

Consider the following function:

(a) Use the Intermediate Value Theorem to show that    has at least one zero.

(b) Use the Mean Value Theorem to show that    has at most one zero.


Solution


Detailed Solution


Return to Sample Exam