Difference between revisions of "009A Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam"> Consider the following function:
 
<span class="exam"> Consider the following function:
  
::::::<math>f(x)=3x-2\sin x+7</math>
+
::<math>f(x)=3x-2\sin x+7</math>
  
<span class="exam">a) Use the Intermediate Value Theorem to show that <math>f(x)</math> has at least one zero.
+
<span class="exam">(a) Use the Intermediate Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at least one zero.
  
<span class="exam">b) Use the Mean Value Theorem to show that <math>f(x)</math> has at most one zero.
+
<span class="exam">(b) Use the Mean Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 6 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009A Sample Final 1, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First note that <math>f(0)=7</math>.
 
|-
 
|Also, <math>f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5)</math>.
 
|-
 
|Since <math>-1\leq \sin(x) \leq 1</math>,
 
|-
 
|<math>-2\leq -2\sin(x) \leq 2</math>.
 
|-
 
|Thus, <math>-10\leq f(-5) \leq -6</math> and hence <math>f(-5)<0</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since <math>f(-5)<0</math> and <math>f(0)>0</math>, there exists <math>x</math> with <math>-5<x<0</math> such that
 
|-
 
|<math>f(x)=0</math> by the Intermediate Value Theorem. Hence, <math>f(x)</math> has at least one zero.
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We have <math>f'(x)=3-2\cos(x)</math>. Since <math>-1\leq \cos(x)\leq 1</math>,
 
|-
 
|<math>-2 \leq -2\cos(x)\leq 2</math>. So, <math>1\leq f'(x) \leq 5</math>.
 
|-
 
|Therefore, <math>f'(x)</math> is always positive.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since <math>f'(x)</math> is always positive, <math>f(x)</math> is an increasing function.
 
|-
 
|Thus, <math>f(x)</math> has at most one zero.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' Since <math>f(-5)<0</math> and <math>f(0)>0</math>, there exists <math>x</math> with <math>-5<x<0</math> such that
 
|-
 
|<math>f(x)=0</math> by the Intermediate Value Theorem. Hence, <math>f(x)</math> has at least one zero.
 
|-
 
|'''(b)''' Since <math>f'(x)</math> is always positive, <math>f(x)</math> is an increasing function.
 
|-
 
|Thus, <math>f(x)</math> has at most one zero.
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:53, 2 December 2017

Consider the following function:

(a) Use the Intermediate Value Theorem to show that    has at least one zero.

(b) Use the Mean Value Theorem to show that    has at most one zero.


Solution


Detailed Solution


Return to Sample Exam