Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
<span class="exam">You may leave your answers in point-slope form.
 
<span class="exam">You may leave your answers in point-slope form.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 4 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' '''Chain Rule'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 
|-
 
|'''2.'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d}{dx}(\cos^{-1}(x))=\frac{-1}{\sqrt{1-x^2}}</math>
 
|-
 
|'''3.''' The equation of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">m=f'(a).</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 1, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we compute &nbsp;<math style="vertical-align: -13px">\frac{dy}{dx}.</math>
 
|-
 
|Using the Chain Rule, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{-1}{\sqrt{1-(2x)^2}}(2x)'}\\
 
&&\\
 
& = & \displaystyle{\frac{-2}{\sqrt{1-4x^2}}.}
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|To find the equation of the tangent line, we first find the slope of the line.
 
|-
 
|Using &nbsp;<math style="vertical-align: -14px">x_0=\frac{\sqrt{3}}{4}</math>&nbsp; in the formula for &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&nbsp; from Step 1, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{m} & = & \displaystyle{\frac{-2}{\sqrt{1-4(\frac{\sqrt{3}}{4})^2}}}\\
 
&&\\
 
& = & \displaystyle{\frac{-2}{\sqrt{\frac{1}{4}}}}\\
 
&&\\
 
& = & \displaystyle{-4.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|To get a point on the line, we plug in &nbsp;<math style="vertical-align: -14px">x_0=\frac{\sqrt{3}}{4}</math>&nbsp; into the equation given.
 
|-
 
|So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{y_0} & = & \displaystyle{\cos^{-1}\bigg(2\frac{\sqrt{3}}{4}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\cos^{-1}\bigg(\frac{\sqrt{3}}{2}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}.}
 
\end{array}</math>
 
|-
 
|Thus, the equation of the tangent line is &nbsp; <math style="vertical-align: -14px">y=-4\bigg(x-\frac{\sqrt{3}}{4}\bigg)+\frac{\pi}{6}.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{dy}{dx}=\frac{-2}{\sqrt{1-4x^2}}</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>y=-4\bigg(x-\frac{\sqrt{3}}{4}\bigg)+\frac{\pi}{6}</math>
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:46, 2 December 2017

If   compute    and find the equation for the tangent line at  

You may leave your answers in point-slope form.


Solution


Detailed Solution


Return to Sample Exam