Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
<span class="exam">You may leave your answers in point-slope form.
 
<span class="exam">You may leave your answers in point-slope form.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 4 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' What two pieces of information do you need to write the equation of a line?
 
|-
 
|
 
::You need the slope of the line and a point on the line.
 
|-
 
|'''2.''' What does the Chain Rule state?
 
|-
 
|
 
::For functions  <math style="vertical-align: -5px">f(x)</math>&thinsp; and <math style="vertical-align: -5px">g(x),</math>&nbsp; <math style="vertical-align: -12px">~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x).</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 1, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we compute&thinsp; <math style="vertical-align: -13px">\frac{dy}{dx}.</math> We get
 
|-
 
|
 
::<math>\frac{dy}{dx}\,=\,2x-\sin(\pi(x^2+1))(2\pi x).</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|To find the equation of the tangent line, we first find the slope of the line.
 
|-
 
|Using <math style="vertical-align: -3px">x_0=1</math>&thinsp; in the formula for &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&thinsp; from Step 1, we get
 
|-
 
|
 
::<math>m=2(1)-\sin(2\pi)2\pi\,=\,2.</math>
 
|-
 
|To get a point on the line, we plug in <math style="vertical-align: -3px">x_0=1</math>&thinsp; into the equation given.
 
|-
 
|So, we have&thinsp; <math style="vertical-align: -5px">y=1^2+\cos(2\pi)=2.</math>
 
|-
 
|Thus, the equation of the tangent line is&thinsp; <math style="vertical-align: -5px">y=2(x-1)+2.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|
 
:<math>\frac{dy}{dx}=2x-\sin(\pi(x^2+1))(2\pi x)</math>
 
|-
 
|
 
:<math>y=2(x-1)+2</math>
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:46, 2 December 2017

If   compute    and find the equation for the tangent line at  

You may leave your answers in point-slope form.


Solution


Detailed Solution


Return to Sample Exam