Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "{| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- | |} '''Solution:''' '''(a)''' {| class="mw-collapsible mw-collapsed" style = "te...")
 
 
(19 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam"> If &nbsp;<math style="vertical-align: -5px">y=\cos^{-1} (2x)</math> compute &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&nbsp; and find the equation for the tangent line at &nbsp;<math style="vertical-align: -14px">x_0=\frac{\sqrt{3}}{4}.</math>
!Foundations: &nbsp;  
 
|-
 
|
 
|}
 
  
'''Solution:'''
+
<span class="exam">You may leave your answers in point-slope form.
  
'''(a)'''
+
<hr>
 +
[[009A Sample Final 1, Problem 4 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Final 1, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:46, 2 December 2017

If   compute    and find the equation for the tangent line at  

You may leave your answers in point-slope form.


Solution


Detailed Solution


Return to Sample Exam