Difference between revisions of "009A Sample Final 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar. Click on the''' '''<span class=...")
 
 
(28 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
+
'''This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.'''
 +
 
 +
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
 
== [[009A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[009A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
+
<span class="exam">Compute
  
<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math>
  
<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin^2x}{3x}</math>
  
<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
+
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
  
 
== [[009A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> Consider the following piecewise defined function:
+
<span class="exam"> Let
  
::::::<math>f(x) = \left\{
+
::<math>f(x) = \left\{
 
     \begin{array}{lr}
 
     \begin{array}{lr}
       x+5 &  \text{if }x < 3\\
+
       \frac{x^2-2x-3}{x-3} &  \text{if }x \ne 3\\
       4\sqrt{x+1} & \text{if }x \geq 3
+
       5 & \text{if }x = 3
 
     \end{array}
 
     \end{array}
 
   \right.
 
   \right.
 
</math>
 
</math>
<span class="exam">a) Show that <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: 0px">x=3</math>.
+
<span class="exam"> For what values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; continuous?
  
<span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align: -5px">f(x)</math> is differentiable at <math style="vertical-align: 0px">x=3</math>.
+
== [[009A_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam">Compute &nbsp; <math>\frac{dy}{dx}.</math>
  
== [[009A_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -15px">y=\bigg(\frac{x^2+3}{x^2-1}\bigg)^3</math>
<span class="exam">Find the derivatives of the following functions.
 
  
<span class="exam">a) <math style="vertical-align: -14px">f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -4px">y=x\cos(\sqrt{x+1})</math>
  
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
+
<span class="exam">(c) &nbsp;<math style="vertical-align: -5px">y=\sin^{-1} x</math>
  
 
== [[009A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> If
+
<span class="exam">Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
  
::::::<math>y=x^2+\cos (\pi(x^2+1))</math>
+
::<span class="exam"><math style="vertical-align: -4px">3x^2+xy+y^2=5</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(1,-2)</math>
 
 
<span class="exam">compute &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&thinsp; and find the equation for the tangent line at <math style="vertical-align: -3px">x_0=1</math>. You may leave your answers in point-slope form.
 
  
 
== [[009A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[009A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?
+
<span class="exam"> A lighthouse is located on a small island 3km away from the nearest point &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from &nbsp;<math style="vertical-align: 0px">P?</math>
  
 
== [[009A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[009A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> Consider the following function:
+
<span class="exam"> Find the absolute maximum and absolute minimum values of the function
  
::::::<math>f(x)=3x-2\sin x+7</math>
+
::<math>f(x)=\frac{1-x}{1+x}</math>
  
<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math> has at least one zero.
+
<span class="exam">on the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
 
 
<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math> has at most one zero.
 
  
 
== [[009A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 
== [[009A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
<span class="exam">A curve is defined implicitly by the equation
+
<span class="exam"> Show that the equation &nbsp;<math style="vertical-align: -2px">x^3+2x-2=0</math>&nbsp; has exactly one real root.
 
 
::::::<math>x^3+y^3=6xy.</math>
 
 
 
<span class="exam">a) Using implicit differentiation, compute &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>.
 
 
 
<span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>.
 
  
 
== [[009A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
 
== [[009A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
<span class="exam">Let
+
<span class="exam">Compute
  
::::::<math>y=x^3.</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}</math>
  
<span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}</math>
  
<span class="exam">b) Use differentials to find an approximate value for <math style="vertical-align: -1px">1.9^3</math>.
+
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}</math>
  
 
== [[009A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 
== [[009A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
<span class="exam">Given the function <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>,  
+
<span class="exam">A plane begins its takeoff at 2:00pm on a 2500-mile flight. After 5.5 hours, the plane arrives at its destination. Give a precise mathematical reason using the mean value theorem to explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour.
  
<span class="exam">a) Find the intervals in which the function increases or decreases.
+
== [[009A_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
 
<span class="exam">b) Find the local maximum and local minimum values.
 
  
<span class="exam">c) Find the intervals in which the function concaves upward or concaves downward.
+
<span class="exam">Let
 
+
::<math>f(x)=\frac{4x}{x^2+1}.</math>
<span class="exam">d) Find the inflection point(s).
 
 
 
<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>.
 
 
 
== [[009A_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
  
<span class="exam">Consider the following continuous function:
+
<span class="exam">(a) Find all local maximum and local minimum values of &nbsp;<math style="vertical-align: -4px">f,</math>&nbsp; find all intervals where &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is increasing and all intervals where &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is decreasing.
::::::<math>f(x)=x^{1/3}(x-8)</math>
 
  
<span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>.
+
<span class="exam">(b) Find all inflection points of the function &nbsp;<math style="vertical-align: -4px">f,</math>&nbsp; find all intervals where the function &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is concave upward and all intervals where &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is concave downward.
  
<span class="exam">a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>.
+
<span class="exam">(c) Find all horizontal asymptotes of the graph &nbsp;<math style="vertical-align: -5px">y=f(x).</math>
  
<span class="exam">b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[-8,8]</math>.
+
<span class="exam">(d) Sketch the graph of &nbsp;<math style="vertical-align: -5px">y=f(x).</math>

Latest revision as of 12:25, 2 December 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Compute

(a)  

(b)  

(c)  

 Problem 2 

Let

For what values of    is    continuous?

 Problem 3 

Compute  

(a)  

(b)  

(c)  

 Problem 4 

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

  at the point  

 Problem 5 

A lighthouse is located on a small island 3km away from the nearest point    on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from  

 Problem 6 

Find the absolute maximum and absolute minimum values of the function

on the interval  

 Problem 7 

Show that the equation    has exactly one real root.

 Problem 8 

Compute

(a)  

(b)  

(c)  

 Problem 9 

A plane begins its takeoff at 2:00pm on a 2500-mile flight. After 5.5 hours, the plane arrives at its destination. Give a precise mathematical reason using the mean value theorem to explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour.

 Problem 10 

Let

(a) Find all local maximum and local minimum values of    find all intervals where    is increasing and all intervals where    is decreasing.

(b) Find all inflection points of the function    find all intervals where the function    is concave upward and all intervals where    is concave downward.

(c) Find all horizontal asymptotes of the graph  

(d) Sketch the graph of