Difference between revisions of "009A Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -5px">y=\sin^{-1} x</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -5px">y=\sin^{-1} x</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 2, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' '''Product Rule'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(f(x)g(x))=f(x)g'(x)+f'(x)g(x)</math>
 
|-
 
|'''2.''' '''Quotient Rule'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
 
|-
 
|'''3.''' '''Chain Rule'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 2, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using the Chain Rule, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{dy}{dx}=3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{x^2+3}{x^2-1}\bigg)'.</math>
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, using the Quotient Rule, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{dy}{dx}} & = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{x^2+3}{x^2-1}\bigg)'}\\
 
&&\\
 
& = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{(x^2-1)(x^2+3)'-(x^2+3)(x^2-1)'}{(x^2-1)^2}\bigg)}\\
 
&&\\
 
& = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{(x^2-1)(2x)-(x^2+3)(2x)}{(x^2-1)^2}\bigg)}\\
 
&&\\
 
& = & \displaystyle{3\bigg(\frac{x^2+3}{x^2-1}\bigg)^2\bigg(\frac{2x^3-2x-2x^3-6x}{(x^2-1)^2}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{3(x^2+3)^2(-8x)}{(x^2-1)^4}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using the Product Rule, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{dy}{dx}=x(\cos(\sqrt{x+1}))'+(x)'\cos(\sqrt{x+1}).</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, using the Chain Rule, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{dy}{dx}} & = & \displaystyle{x(\cos(\sqrt{x+1}))'+(x)'\cos(\sqrt{x+1})}\\
 
&&\\
 
& = & \displaystyle{x(-\sin(\sqrt{x+1}))(\sqrt{x+1})'+(1)\cos(\sqrt{x+1})}\\
 
&&\\
 
& = & \displaystyle{-x\sin(\sqrt{x+1})\frac{1}{2\sqrt{x+1}}(x+1)'+\cos(\sqrt{x+1})}\\
 
&&\\
 
& = & \displaystyle{\frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1}).}
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -5px">f(x)=\sin(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g(x)=\sin^{-1}x.</math>
 
|-
 
|These functions are inverses of each other since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(g(x))=x</math>&nbsp; and &nbsp; <math style="vertical-align: -5px">g(f(x))=x.</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{g'(x)} & = & \displaystyle{\frac{1}{f'(g(x))}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{\cos(\sin^{-1} x)}.}
 
\end{array}</math>
 
|-
 
|Now, let &nbsp;<math style="vertical-align: -5px">y=\sin^{-1}(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">x=\sin(y).</math>
 
|-
 
|So, &nbsp;<math style="vertical-align: -5px">\cos(\sin^{-1} x)=\cos(y).</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>g'(x)=\frac{1}{\cos(y)}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\cos^2 y+\sin^2 y =1,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\cos(y)} & = & \displaystyle{\sqrt{1-\sin^2 y}}\\
 
&&\\
 
& = & \displaystyle{\sqrt{1-x^2}.}
 
\end{array}</math>
 
|-
 
|Hence,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>g'(x)=\frac{1}{\sqrt{1-x^2}}.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{3(x^2+3)^2(-8x)}{(x^2-1)^4}</math>
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1})</math>
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>\frac{1}{\sqrt{1-x^2}}</math>
 
|}
 
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 10:10, 1 December 2017

Compute  

(a)  

(b)  

(c)  


Solution


Detailed Solution


Return to Sample Exam