Difference between revisions of "009A Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
 
<span class="exam"> For what values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; continuous?
 
<span class="exam"> For what values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; continuous?
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 2, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=a</math>&nbsp; if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 2, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Based on the description of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp;
 
|-
 
|we know &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math>&nbsp;
 
|-
 
|Now, we need to see if &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=3.</math>&nbsp;
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} \frac{x^2-2x-3}{x-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 3^+} \frac{(x-3)(x+1)}{x-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 3^+} x+1}\\
 
&&\\
 
& = & \displaystyle{4.}
 
\end{array}</math>
 
|-
 
|Similarly,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 3^-}f(x)=4.</math>
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: 0px">\lim_{x\rightarrow 3^-}f(x)=\lim_{x\rightarrow 3^+}f(x)</math>&nbsp;
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 3}f(x)=4.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|But, since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(3)=5,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 3}f(x)\ne f(3).</math>
 
|-
 
|Therefore, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is not continuous at &nbsp;<math style="vertical-align: 0px">x=3.</math>&nbsp;
 
|-
 
|&nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous only on &nbsp;<math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math>&nbsp;
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on &nbsp;<math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math>&nbsp;
 
|}
 
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 10:08, 1 December 2017

Let

For what values of    is    continuous?


Solution


Detailed Solution


Return to Sample Exam